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Chapter 1

Introduction

The Coronavirus disease 2019 (COVID-19) pandemic put the scientific community to the test:
how infectious, morbid and mortal was the dieseas? when and for how long did infected people
become infectious? how effective are the countermeasures taken? how safe and effective are the
vaccines that were developed at an unprecedented speed? Some of these questions, e.g. those about
the epidemiology of COVID-19, are confined to well-established areas of research, while others,
e.g. those about the efficacy of countermeasures, required collaboration across a wide range of
disciplines: from infectious disease epidemiology, mathematical and statistical modeling, social and
communication science to non-scientific actors such as legislators, journalists and politicians.

Although there is still a lot of scientific and societal follow-up work to be done, given the magnitude
of this challenge, it is astonishing how well science and society as a whole have handled the pandemic.
A key factor in this accomplishment is the large-scale availability of data surrounding the pandemic.
In many countries, including Germany, data on reported cases, deaths, vaccinations and deaths
were published daily by the respective national health authorities, i.e. the Robert Koch-Institut
(RKI) (Robert Koch-Institut, 2021, 2022) in Germany. Additionally, mobility data from mobile
communications providers allowed researchers to relate human movement to the spread of COVID-19
(Kraemer et al., 2020; Schlosser et al., 2020). As each day the news reported on the number of
newly reported cases and deaths, numerous dashboards with analyses of COVID-19 data were
made available and an abundant number of scientific works was created, effectively communicating
with the public, whose cooperation with countermeasures was critical, became more and more
important. To disseminate insights to the public, we need to understand and communicate to them
the underlying dynamics of an epidemic.

An epidemic outbreak is inherently a random phenomenon (Diekmann, Heesterbeek, and Britton,
2013). Who becomes infected, for how long they stay infectious, whom they meet while they are
infectious and whom they finally infect are all aspects that depend to a certain degree on chance. If
one is interested in large-scale phenomena, e.g. effects of immunization in a large population, one
may get away with a deterministic model (Britton et al., 2019), such as the classical S(E)IR model
(Kermack and McKendrick, 1927) or variants of it. However, as soon as one is interested in more
detailed phenomena, as we are in this thesis, stochastic and statistical modeling becomes essential.

An epidemic outbreak is also inherently a local phenomenon, especially in the early phase of the
epidemic. In the extreme case, there is only a single infectious person and, for the most part, their
potential infectees will belong to the same spatial region as the infector. Therefore, we should
incorporate this locality into our models. To fit such models to data, the data has to include spatial
information. Luckily, the case and death data are available at the subnational level in most countries.
In Germany, it is even available at the county (Landkreis, NUTS3) level (Robert Koch-Institut,
2022).

As statisticians, having access to such a large amount of data is both a blessing and a curse. While
more, and ideally better, data allows us to formulate and answer more relevant questions, the models
we create to accommodate these data become more and more intricate. Intricate models require

1



2 CHAPTER 1. INTRODUCTION

more care in modeling, fitting and interpretation, as more things can go wrong along the way. Thus
we will tread carefully. As we incorporate more detailed effects into our models, fitting the models to
data becomes difficult to practically impossible using established techniques. While there are some
remedies for this curse of dimensionality, e.g. exploiting as much available structure as possible,
there is an ongoing need for new procedures enabling inference in these settings. Additionally, we
need mathematical as well as practical insight into the performance of these procedures to make
informed decisions in applied settings: which methods should we prefer under which circumstances?

These considerations set the stage for this thesis. Driven by the need for good statistical models
that allow us to answer urgent questions in infectious disease epidemiology, with COVID-19 as a
driving example, we will start with an analysis of what is required of these sought-after models. We
will define and discuss the role of several epidemiological indicators, i.e. quantities that have an
interpretation related to the epidemic. It turns out that we will usually be interested in quantifying
the speed at which the epidemic proliferates, and we discuss several popular indicators that measure
this speed. A useful statistical analysis should provide interpretable insight into the problem at
hand, so we focus on how straightforward this interpretation is, giving recommendations on when
to use which indicator. To estimate these indicators from data, we have to create statistical models
that include them. Before we do so, we will create a list of desiderata from the context of COVID-19.

Once we have a clear view of the epidemiological problems at hand, we show that many of
the desiderata can be covered by using SSMs, a flexible framework for modeling non-stationary
time series. Unfortunately, we will require that these SSMs include integer-valued, non-Gaussian,
observations, which makes fitting the models to data analytically impossible and numerically
difficult, as one is essentially faced with a high-dimensional non-Gaussian Bayesian inference
problem. Instead, inference will be based on simulation methods, most notably importance sampling.
To apply these methods, the practitioner has some flexibility in the so-called proposal distribution,
a tractable approximation to the Bayesian posterior. Different disciplines have developed simulation-
based techniques that allow the user to choose optimal proposals, where optimality is based on
different performance criteria for different methods. In this thesis, we focus on two methods: the
Cross-Entropy method (CE-method) and Efficient Importance Sampling (EIS). In the literature, a
comparison between these two methods is missing: there are neither mathematical nor empirical
results comparing the two. We fill this gap by first proving central limit theorems for both methods,
allowing for a theoretical comparison. Additionally, we also provide simulation studies comparing
the methods on instructive univariate and SSMs examples. To this end, we also develop a new
algorithm that allows the CE-method to be applied to state space models (SSMs).

Finally, we demonstrate how to solve a selection of infectious disease epidemiology problems using
the mathematical insights we gained. These examples focus on the COVID-19 epidemic in Germany
and illustrate the modeling, computational and applied aspects of this thesis.

add some more refs?
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4 CHAPTER 2. EPIDEMIOLOGICAL CONSIDERATIONS

The spread of infectious diseases, such as COVID-19, is a complex phenomenon. For COVID-19,
this complexity arises from the interplay of many factors. Studying these influences allows us to
define the aims and challenges of epidemiological modeling in the context of this thesis. It also will
guide us towards desirable and possible outcomes of our efforts from an applied perspective.

First of all, there is considerable heterogeneity in the way the disease progresses once an individual
is infected (Salzberger et al., 2021). Some infectees may show few to no symptoms but are still
highly infectious (Byambasuren et al., 2020), and disease progression is tightly linked to age and
preexisting comorbidities (Biswas et al., 2020). Additionally, different variants of SARS-CoV-2 differ
in key epidemiological characteristics such as the reproduction number (Z. Du et al., 2022) and
mortality (Hughes et al., 2023).

Second, the spread is highly dependent on the contact behavior in the population, as the infector
has to be in close physical proximity to the infectee to infect them. These contact patterns are
an essential component of any mathematical model for infectious diseases, as they define how the
epidemic evolves. While there are some empirical studies (Mossong et al., 2008; Tomori et al., 2021),
capturing the contact behavior at certain points in time, in the context of an ongoing epidemic
these patterns are subject to change, not only in intensity but also in shape (Tomori et al., 2021).
As contact restrictions were put into place or lifted, mask-wearing was enforced and home office and
schooling became commonplace, so did the number of contacts change and occur under different
circumstances.

Finally, as the virus spread in the population and vaccinations became available, the population
became partially immune against the disease, if not against infection

citep

. This immunity affects the spread as well: if an infector has contact with a partially immune
individual, the probability of transmission is smaller. Additionally, partial immunity may lead
infectors to develop fewer or no symptoms so they may not be aware of being infectious, foregoing
quarantine.

Parts of this chapter, especially Sections 2.2 to 2.4, consist of the ideas published in (Heyder and
Hotz, 2023), but have been rewritten to fit better into this thesis.

As statisticians, we are faced with a difficult problem: Which of these factors should we include in our
model and how? The answer certainly depends on the epidemiological question under consideration
and the availability and quality of data.

2.1 Objectives of epidemiological modelling
Before considering the mathematical modeling of epidemics, let us make clear what the goals of
our investigation are. In this thesis, we are interested in providing models that are informed by
real-world data, allow us to learn about the past, current or future state of the epidemic and whose
results are, ideally, easy to communicate to non-experts, e.g. political stakeholders. These time
scales can be translated into the following three tasks for epidemiological modeling.

Retrospective Analysis Here we are interested in an ex-post analysis of a period of interest in
the past. The goal here is either to infer intrinsic epidemiological quantities, such as the time-varying
reproduction number Rt (Abbott et al., 2020) or to evaluate the performance of non-pharmaceutical
interventions (NPIs) taken (Brauner et al., 2021; Flaxman et al., 2020; Khazaei et al., 2023). The
results of this analysis may inform future decisions on which countermeasures to implement, and
as such we want a causal link between the NPIs prescribed and the reduction in reported cases.
Naturally, this is a difficult objective to accomplish due to several aspects. The data at our disposal
is observational and there are several quality issues, see Section 2.3. Additionally, the interplay
between NPIs and change in the behavior of the population is intricate, where voluntary behavioral
change may precede the enforced social distancing (Gupta, Simon, and Wing, 2020). For some
examples focusing on the efficacy of NPIs, we refer the reader to the excellent articles (Brauner
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et al., 2021; Flaxman et al., 2020; Khazaei et al., 2023), especially the discussion and limitation
sections therein. In these types of analyses, we can assume that all data related to that period is as
complete as it will be. Methods used to perform these analyses range from estimating parameters
for each day individually, e.g. using the EpiEstim (Cori, 2021) method (Abbott et al., 2020), to
constructing complex Bayesian mechanistic (Flaxman et al., 2020) and hierarchical models (Brauner
et al., 2021; Khazaei et al., 2023).

Monitoring For monitoring, we are interested in real-time inference about the current state of
the epidemic. This includes the recent past and near future and may include now- and forecasts of
cases, hospitalizations or deaths. Here data is not yet final, and inference is complicated by slow
reporting and data revisions, see Section 2.3. The results of monitoring can be used to inform current
policy, i.e. whether current NPIs should be lifted or new ones enforced. Most online dashboards
that emerged at the beginning of the pandemic fall into this category. The result of monitoring may
either be an estimate of an epidemiological indicator, but may also consist of short-term forecasts.
Examples of the former include the daily reproduction number estimates of the RKI (An Der Heiden
and Hamouda, 2020), the Helmholtz Centre for Infection Research’s dashboard (Khailaie et al.,
2021) or the dashboard of the authors team (Hotz et al., 2020).

While some of these dashboards also provide forecasts of cases, a more concerted effort of forecasts
is provided by the U.S. ForecastHub (Ray et al., 2020), its German/Polish (Bracher et al., 2021;
Bracher et al., 2022) and EU/EFTA (Sherratt et al., 2022) equivalents. These collaborative platforms
gathered real-time forecasts of COVID-19 cases and deaths in the upcoming four weeks, based on an
ensemble that aggregates predictions from several models provided by expert modelers. In a real-time
setting, these forecasts can be evaluated which may inform practitioners as to which model to prefer.
For forecasting, methods range from classical time series analysis methods (Arroyo-Marioli et al.,
2021) to compartmental models (Khailaie et al., 2021) and computationally intensive agent-based
models (Adamik et al., 2020).

Scenario Modeling Scenario modeling concerns itself with the impact that changes of current
circumstances, e.g. variants, seasonality, policies, vaccination or NPIs, have on public health
outcomes. Contrary to monitoring, the goal is to quantify the influence over longer periods with
scenarios reaching multiple months into the future. The parameters of scenarios are assumed to be
uncertain as well, making the task at hand challenging. These forecasts are difficult to evaluate, as
the scenario specifications rely on assumptions that are hard to verify in practice. Nevertheless,
these scenarios help policymakers make informed decisions (Borchering et al., 2023).

In the context of this thesis, we are primarily interested in performing retrospective analyses and
providing tools for monitoring as well as short-term forecasting. While scenario modeling has its
own merits, evaluating the performance of models is much harder, as there is no ground truth
to compare against. Additionally, the methods developed in this thesis rely on having recurring
observations on a daily or weekly time scale, usually in the form of reported cases, deaths, or
hospitalizations, which for scenario modeling are not available. If such observations are not available,
i.e. because we are forecasting months ahead, the uncertainty produced by our models will be much
too large to be sensible.

transition

2.2 Measures of epidemic spread
A key component of any epidemiological model is how the spread of the epidemic is accounted for.
As argued before, an epidemic is a complex process, driven by many different factors. To make this
complexity manageable we employ simplified models for the spread of cases and, depending on the
assumptions made, different measures that quantify the epidemic’s spread arise. Actually, we are
not only interested in the spread of the epidemic but also in the speed, i.e. the change over time,
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with which cases proliferate, because it allows us to make predictions about future cases and thus
give recommendations about whether countermeasures should be employed or lifted.

In this thesis, we will primarily focus on two of these measures: the growth factor and the reproduction
number. As we will argue, these two measures come with simple interpretations and, as such, are
valuable in communicating the results of our modeling efforts not only to other researchers but also
to non-experts such as the public and political stakeholders.

Additionally, we will be interested in measures that capture the severity of the epidemic, i.e. the
morbidities and mortalities caused by the epidemic. As these events are consequences of infection
that occur after a delay, they can be recovered from incidence data. Thus modeling the spread of
the epidemic serves two goals: making inferences and predictions about the cases and associated
measures, as well as morbidities.

To introduce the different measures in the following, we will, for the moment, make some simplifying
assumptions about the population in which the epidemic spreads and the time frame considered.
Consecutively, we will relax these assumptions to accommodate more realistic populations.

First of all, we consider a homogenous population with homogenous mixing. This means that any
two individuals in the population are affected by the epidemic in the same way: the probabilities
of becoming infected, infectious, hospitalized or recovering from infection are the same for every
individual in the population. Additionally, homogenous mixing indicates that once an individual is
infected, they meet and infect every other individual in the population with the same probability.
Furthermore, we assume that the population is large enough that the probability of duplicate
infections, i.e. becoming infected twice either from the same or different individuals, is negligibly
small, and we assume that infections occur independently from one another. Similarly, we could
also assume that the population is infinitely large or that the time frame under consideration is
sufficiently short. Finally, we assume that the behavior of the population is constant over the period
modeled.

2.2.1 Reproduction number
We will model the evolution of the epidemic in discrete time, as this is the time scale on which
data are available. Denote by I0 ∈ N the initial number of infected and for a day t ∈ N let It be
the number of newly infected individuals on that day. Note that It is random. For τ ∈ N let βτ be
the expected number of secondary cases a primary case infects τ days after they become infectious
themselves and assume that the expected number of secondary cases Rc =

∑
τ∈N βτ is non-zero

and finite 0 < Rc <∞. Rc is called the case reproduction number. Here we have implicitly assumed
that w0 = 0, i.e. infected individuals need at least one day to become infectious themselves. For
COVID-19 this is a reasonable assumption (Lauer et al., 2020).

As we have assumed that Rc is finite, we may write βτ = Rcwτ where wτ = βτ
Rc

. w = (wτ )τ∈N is
called the generation time distribution or the infectivity profile. On day t the conditional expectation
of newly infected individuals given all past incidences E (It|It−1, It−2, . . . ) can then be written as a
convolution of w and the number of past cases

E (It|It−1, It−2, . . . ) = Rc

∞∑
τ=1

It−τwτ , (2.1)

the so-called renewal equation. Here It−τ = 0 if τ > t. If case numbers are small, e.g. if the
assumptions we demand hold, the conditional distribution of It given past cases is, by the law
of small numbers, well approximated by a Poisson distribution and combined with the renewal
equation we obtain the renewal equation model (C. Fraser, 2007)

It|It−1, It−2, · · · ∼ Pois

(
Rt

∞∑
τ=1

It−τwτ

)
, (2.2)

where the time-varying or instantaneous reproduction number Rt is now allowed to vary over time as
well. Working with the time-varying reproduction number Rt over the case reproduction number Rc
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has the advantage that Rt can be estimated from data until day t alone, while Rc =
∑
τ=1 wτRt+τ

depends on future cases (C. Fraser, 2007).

Given incidence data It, It−1, . . . we can perform frequentist inference on Rt in Equation (2.2) by
estimating

R̂t =
It∑∞

τ=1 It−τwτ
, (2.3)

which is a moment- and maximum-likelihood estimator (Hotz et al., 2020). Additionally (Cori,
2021) provides a Bayesian framework, using conjugate gamma priors for Rt. If one is interested in
the case reproduction number Rc it can be recovered from estimates of Rt as R̂c =

∑∞
τ=1 wτ R̂t+τ

or using the Wallinga-Teunis estimator (Wallinga and Teunis, 2004).

The reproduction numbers Rc and Rt have a mechanistic interpretation: Rc is the number of
secondary cases an infectious individual can expect to infect over the time of their disease, and
so is Rt with the additional assumption that the behavior of the infection process stays the same
for the whole duration of infection. Assuming that contacts lead to infection independently and
with the same probability, this means that the reproduction numbers are proportional to the total
number of contacts a person has, and as such, they are an excellent measure of the efficacy of NPIs
(Brauner et al., 2021; Flaxman et al., 2020; Khazaei et al., 2023). An additional advantage is that
the model (2.2) can be interpreted mechanistically, i.e. Rt gives a mechanical model of why the
number of cases increases. In contrast, the model of exponential growth that we will address next
is more phenomenological in nature, based on the observation that the number of cases tend to
increase or decrease exponentially.

2.2.2 Growth Factor
If I0 is small compared to the total population size, a sensible assumption, one can show that under
the above model, the expected number of cases grows approximately exponentially (Diekmann,
Heesterbeek, and Britton, 2013, Section 1.2),

EIt ≈ ρEIt−1 ≈ ρtEI0. (2.4)

ρ is called the daily exponential growth factor and can be recovered from Equation (2.1) by an
exponential ansatz (Wallinga and Lipsitch, 2007):

ρtEI0 = EIt = Rc

∞∑
τ=1

It−τwτ = Rc

∞∑
τ=1

EI0ρt−τwτ = ρtEI0

(
Rc

∞∑
τ=1

ρ−τwτ

)
which shows that unless ρ or EI0 is zero,

∞∑
τ=1

ρ−τwτ =
1

Rc

has to hold. The left-hand side is the probability generating function Eρ−W for W ∼∑∞τ=1 wτδτ .
As W ≥ 1 almost surely and the probability generating function is strictly increasing with limits 0
and ∞ as ρ goes to 0 and ∞ respectively , there is exactly one solution ρ ∈ R>0 to this equation.
Here we assume that w is not degenerate, i.e. not a.s. 1 and that we can exchange limits with the
infinite sum, e.g. because w has bounded support. Thus, once the infectivity profile w is fixed, there
is a one-to one relationship between ρ and Rc.

Similarly to the time-varying reproduction number, we may alter Equation (2.4) by introducing for
t ∈ N a time-varying growth factor ρt ∈ R>0, resulting in

EIt = ρtEIt−1, (2.5)

which can be estimated, e.g. by the moment-estimator ρ̂t =
Itj
It−1

.

Focusing on the growth factor over the reproduction number has the advantage that one does not
need to specify a generation time distribution w to estimate ρt, whereas it is essential for estimating
Rt.



8 CHAPTER 2. EPIDEMIOLOGICAL CONSIDERATIONS

2.2.3 Other indicators
Instead of concentrating on the daily evolution of the epidemic, it may be beneficial to consider the
weekly behavior instead. As we will see in Section 2.3, the incidence data available in Germany
are strongly contaminated by weekday effects, with few cases reported on the weekends and more
during the week. To avoid explicitly modeling these effects we will, in Section 4.2 group the case
data by weeks and estimate the weekly growth factor

ρ7 ≈ E
∑6
s=0 It−s

E
∑6
s=0 It−7−s

. (2.6)

Here we assumed, again, that the circumstances of the epidemic do not change over the period
considered. By slight abuse of notation, we let ρ7t be this weekly growth factor, where now t is
counting weeks instead of days. Notice that when ρt is time-varying, it is not necessarily the case
that ρ7t =

∏6
s=0 ρt−s. Notice that if EW = 7, i.e. the average infectious period is one week, the

delta-method yields

Rc =
1

Eρ−W
≈ ρ7.

Let us hasten to add that there is no reason for the error in this approximation to be small.
Nevertheless, as the average infectious period is somewhat smaller than one week for COVID-19,
we may think of ρ7 as, approximately, the reproduction number.

The exponential growth rate r and doubling time d are closely related to the growth factor, and are
given by

r = log ρ d = logρ 2 =
log 2

log ρ
.

Thus r is the growth rate of the exponentially increasing cases, EIt ≈ exp(rt)EI0 and d is the
time it takes for cases to double under this exponential growth, EIt+d ≈ E2It. Notice that the
last equation only makes sense if d ∈ N, or if we model the epidemic to evolve in continuous time
instead. These two quantities are not as easy to interpret as, e.g., the weekly growth factor or the
reproduction number.

2.2.4 Usefulness of indicators for communication
This subsection briefly summarizes the ideas published in (Heyder and Hotz, 2023).

Given incidence data, which of the above indicators should one estimate and report? The answer
depends, of course, on the goals of one’s investigations and the data at hand as well as the audience
to which one communicates these estimates.

When the audience is the general public, reproduction numbers and growth factors allow us to convey
the exponential growth of the epidemic, either by an argument based on generations (reproduction
number) or by exponential growth in time (growth factor).

If data about the infectivity profile w is available, e.g. from contact-tracing studies, reproduction
numbers have the advantage of having a concrete, mechanistic interpretation as numbers of infectious
contacts. If one is interested in containing the epidemic, i.e. „flattening the curve“, reducing contacts
uniformly in the population by a factor of c = 1− 1

R works. That is if R = 1.25, we have to reduce
contacts by 20% to reach R = 1. Such information is useful not only for policymakers but also for
the general population.

Another concern of monitoring is short-term forecasts of future cases, say, for one to four weeks
ahead. Given just the estimated growth factor or reproduction number, this task is more easily
achieved by the growth factor: it suffices to multiply current incidences by ρ7 to get the expected
number of cases in the next week. For reproduction numbers, forecasting is more involved, relying
on simulation to repeatedly sample from Equation (2.2).

We recommend not communicating exponential growth rates and doubling times if at all possible.
Exponential growth rates come with the disadvantages of the growth factor without the upside of
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Figure 2.1: Generation time distribution used to estimate reproduction numbers throughout this
thesis.

having easily accessible forecasts. While doubling times allow for forecasts in terms of when the
number of cases will double, such forecasts are usually not of primary interest.

How well we can estimate these indicators depends on the available data and, in particular, their
quality.

2.3 Available data and its quality
Early during the COVID-19 epidemic, a surprising amount of publicly accessible data on the
severity became available quickly. These data were provided by national health authorities such
as the Robert Koch-Institut (RKI) in Germany, but also made available through aggregate data
repositories, e.g. by the Johns Hopkins University Center for Systems Science and Engineering
(JHU CSSE) (Dong, H. Du, and Gardner, 2020). These data contain information about the number
of cases and deaths reported each day and, depending on the data source, further information, e.g.,
the age, sex or location of the case may be included.

The main source of data we use for the models in Chapter 4 consists of case, death and hospitalization
data. In the following, we will present some peculiarities of these data, given by descriptive statistics
and explorative data analyses. Based on the findings in this section, the next section, Section 2.4
will derive desiderata for estimating the indicators introduced in the last section Section 2.2.

Let us note that several other data could be of interest as well, depending on the analysis at hand.
Useful data includes the DIVI-Intensivregister data monitoring the ICU occupancy and capacity in
Germany as well as data on the number of tests and vaccines administered. In our later analysis,
we will also make use of other data, e.g. commuting data. As these are not directly related to the
epidemic data, we present them separately in the respective sections.

2.3.1 Epidemiological characteristics of COVID-19
To estimate reproduction numbers by Equation (2.3) we need to assume a discrete time generation
time distribution. Here we use a trapezoidal shape with mean generation time w̄ = 5.6 days, used
also in (Burgard et al., 2021). Its shape is motivated by the fact that primary cases take some
days to become infectious themselves, i.e. the incubation period is several days. Additionally, we
deem infection after 11 days unlikely, as symptomatic individuals are most likely quarantined or
hospitalized after this time. We display this generation time distribution in Figure 2.1.

sources for this?
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2.3.2 Incidence and death data
In this thesis, we focus on the data available for Germany, provided by the RKI available on zenodo
(Robert Koch-Institut, 2024c) or GitHub (Robert Koch-Institut, 2024d). In these repositories, the
RKI publishes daily data on the number of cases in the aforementioned strata. For some days, data
have not been published to zenodo, e.g. for May 31st, 2020

why?

. In this case, we use the data provided by the ard-data RKI-archive on GitHub (MichaelKreil and
fossdd, 2022).

The RKI data contains for any case and death the following information:

• the county (Landkreis) of the case,

• sex (male, female or unknown) and age group (00-04, 05-14, 15-34, 35-59, 60-79, 80+, unknown),

• the dates of reporting (Meldedatum) and symptom onset (Refdatum), as well as

• meta-information whether the case was already present in the past dataset.

The dates of reporting and symptom onset are of particular importance: the date of reporting is
the date that the local health authorities were made aware of the case, which may be several days
after the symptom onset or infection date, but also several days before the RKI is aware of the case.
Thus there are several dates of interest, ordered by occurrence (except for the date of death, which
could occur before any of the two reporting dates)

• the date of infection,

• the date of symptom onset,

• the date of reporting to the local health authorities,

• the date of reporting to the RKI and potentially,

• the date of death.

The date of infection is generally unknown. While the date of symptom onset is close to the date of
infection, unfortunately, it is only known for roughly 25% of the reported cases, which is why we
restrict our analyses to the date of reporting. (An Der Heiden and Hamouda, 2020) use multiple
imputation to circumvent this problem, however, this method assumes that the symptom onset
dates are missing completely at random, which is questionable as, e.g., asymptomatic infections
will produce no date of symptom onset. There can be considerable delay between the two reporting
dates, as we will explore later, see e.g. Figures 2.3 and 2.4.

We restrict ourselves to datasets available from April 1st, 2020, these already include case data
on cases with earlier reporting date. Additionally, we consider only data reported up to, including
May 5th 2023, the date when the WHO declared COVID-19 over as a global health emergency.
Figure 2.2 shows the number of daily reported cases (A) and deaths (B) with a weekly running
mean. Apparent from this figure is the considerable day-to-day variation, the so-called week-day
effect. As the reporting date is tied to the working hours of the local health authorities, fewer cases
are processed, and thus reported, on weekends and more during the week. The week-day effect is
less pronounced for the symptom onset date, if it is known (figure not shown).

We want to highlight two periods of irregularities during the early stage of the epidemic, magnified
in Figure 2.2 A. The first concerns a local outbreak in a German meat processing plant (T. Günther
et al., 2020). Over two weeks in early June, 1 413 positive cases were reported for Gütersloh county.
Due to the low number of reported cases everywhere else, this locally confined outbreak is visible
even when aggregating over all counties in Germany.

ref this later

The second period concerns the Christmas holiday break, where we observe a sudden decline in
reported cases, compensated by a large influx in cases in the second week of January. Due to the
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Figure 2.2: A: daily reported cases in Germany by reporting date, as well as a 7-day running
average, to smoothen out the week-day effect. The first inset shows the impact that a local outbreak
(T. Günther et al., 2020) has on country-wide case numbers, while the second inset shows under-
reporting during the holiday season. B: the number of reported deaths in Germany for each reporting
date, together with a 7-day running average.

holiday leave, we’d expect this drop in cases to be related to fewer staff working at the local health
authorities, rather than a true decrease in cases. Similar patterns are visible for easter 2021 and
Christmas 2021.

Due to late reporting and other reporting artifacts, the number of reported cases for any day s will,
usually, increase over time. The RKI does not report incidences on the same day and so on any day
t > s we obtain incidences Is,t for day s. We say these cases are reported with delay τ = t− s > 0.
This results in the so-called reporting triangle, depicted for April 2020 in Figure 2.3 A.

Hosp: mention seven day sum, not mean!

To quantify the amount of reporting delay, we will focus on the number of newly reported cases on
each day, i.e. we want to determine

Is,t =

t−s∑
τ=1

is,τ ,

where is,τ ∈ N0 is the number of newly reported cases for day s with delay τ , i.e. on day t = s+ τ .
However, due to reporting artifacts, it may occur that is,τ is negative in some instances, e.g. because
the reporting dates of cases have been misattributed. To deal with this issue, we set

Ĩs,t = min{max{Is,s+1, . . . , Is,t}, Is,T },

where T is the last date in our dataset, i.e. 13th October 2023. This running maximum, cut-off at
the final value, ensures that we can write

Ĩs,t =

t−s∑
τ=1

is,τ ,



12 CHAPTER 2. EPIDEMIOLOGICAL CONSIDERATIONS

20000

40000

60000

I s
,t

A

Dec 06

Dec 13

Dec 20

Dec 27

Nov 29 Dec 06 Dec 13 Dec 20 Dec 27
s

t

4000

6000

8000

10000

H
s
,t

B

Nov 29

Dec 06

Dec 13

Dec 20

Dec 27

Nov 29 Dec 06 Dec 13 Dec 20 Dec 27
s

t

data date

Dec 06

Dec 13

Dec 20

Dec 27

Is,t

10,000

30,000

50,000

Hs,t

3000

5000

10000

Figure 2.3: A: The reporting triangle for COVID-19 cases in December 2021. Notice that due to
late reporting the number of reported cases stabilizes only after roughly 4 days. B: The reporting
triangle for COVID-19 hospitalizations in December 2021. Notice that delays are much longer than
those of cases, as it takes weeks to become hospitalized from infection.

where is,τ ∈ N0. Cutting off at Is,T ensures that if a large amount of cases is misattributed, we
still treat the last reported value as the truth. Large positive relative differences Is,t−Is,T

Is,T
> 0,

possibly due to such misattributions, are quite rare, with the 99.9% quantile of these positive
relative differences still being only 16%.

From Figure 2.3 we get the impression that most reporting delays are short, and indeed this is the
case. For day s, let

ps,τ =
is,τ∑∞

τ ′=1 is,s+τ ′

be the proportion of cases that are reported with delay τ ∈ N. The corresponding empirical survival
function

Ŝs(τ) = 1−
∑
τ ′≤τ

ps,τ ′

is the share of cases reported with at most τ days of delay. We compute Ŝs(τ) for each day present
in the dataset. Figure 2.4 A shows box plots of Ŝs(τ) for each delay. We observe that the upper
quartile of Ŝs(4) is already below 5%, while the upper quartile of Ŝs(10) is close to 1%.

Additionally, we estimate

Ŝq(τ) =

∑
s∈q is,s+τ∑

s∈q,τ ′≥1 is,s+τ ′

for each q of the 15 quarters present in our dataset separately, as the reporting behavior may have
changed over time. Here s ∈ q means that the day s lies in the quarter q. The results are shown in
Figure 2.4 B, where we observe that for most quarters, 95% of the cases have been reported after 4
days delay and 99% of the cases have been reported after 8 days delay. Furthermore, we see that
the speed of next-day reporting slightly decreased in 2021 and 2022.

ref this when we do reporting delay model
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Figure 2.4: A: Box plots for the empirical survival function Ŝs(τ) for all days s in the dataset, after
4 (10) days, the upper quartile of Ŝs is close to 5% (1%).B: Empirical survival function Ŝ(τ) for
every quarter present in the COVID-19 dataset. In most quarters 95% (99%) of the cases have been
reported after 4 (8) days of delay.

Reporting delays and artifacts are not the only obstacles we have to overcome when analyzing these
data. By definition, the number of reported cases consists of cases with a positive PCR test. To
compare reported incidences between two points in time, one has to assume that the so-called dark
figure, i.e. the ratio of undetected to detected cases, is the same. However there is little reason
to believe this to be the case: the capacity and total number of PCR tests per week, as well as
the ratio of positive tests, has been changing throughout the whole epidemic. Additionally, the 2G
and 3G NPIs introduced in fall 2021 made testing with rapid tests mandatory, likely changing the
characteristics of those still getting PCR tests.

Overall, we see that interpreting case data turns out to be quite involved.

2.3.3 Hospitalization data
In addition to reported cases and deaths, since April 2021 the RKI publishes the number of
hospitalizations of reported COVID-19 cases each day on zenodo (Robert Koch-Institut, 2024a)
and github (Robert Koch-Institut, 2024b). Similar to incident cases, weekly hospitalizations are
reported by federal state and age group (00-04, 05-14, 15-34, 35-59, 60-79, 80+ and unknown, same
as for cases).

In these data, the number of hospitalizations is linked to the date of reporting of the associated
case, so the “true” value of the indicator for today, which will only be observed after a long delay.
While this association requires a careful interpretation of the indicator (see ??) it was, besides
case incidences and ICU occupancy, one of the main official indicators in Germany informing
countermeasures in 2021.

The extent of delays is visible in the reporting triangle Figure 2.3 B: the reported number of
hospitalizations on December 1st 2021 roughly doubled over the course of one month. By the
aforementioned reporting scheme of hospitalizations, there are two reporting dates for a single
hospitalized case: the reporting date of the case, the date when local health authorities were made
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Figure 2.5: A: the newly reported hospitalizations on days s in December 2021, by delay τ . Notice
the double week-day effect in both s and s+ τ .B: newly reported hospitalizations during December
2021. The double week-day effect is visible in the striped pattern. C: empirical survival function of
hospitalization delays for cases with case reporting date December 1st 2021.

aware of the positive test, and the reporting date of the hospitalization, i.e. the hospitalization was
reported to the RKI. This induces a double weekday effect in the reporting delays which we make
visible in Figure 2.5.

Hospitalizations are associated with the reporting date of the corresponding case and no information
is available on the actual date of hospitalization. In addition, hospitalizations are only published as
weekly sums over the past seven days. This means that the number of hospitalizations reported for
today consists of all hospitalizations that correspond to cases that have a case reporting date in the
past seven days. In particular, if the case reporting date of a hospitalized case is today the case
will not count towards today’s hospitalization count. The reporting date of hospitalization is not
available in the dataset but can be inferred by comparing datasets from consecutive days.

We show the empirical survival function of hospitalizations for a fixed date in Figure 2.5 C, split
by age groups. We observe that delays have long tails, with most cases reported after 12 weeks
(84 days). After such a long delay between infection and hospitalization, we deem it unlikely that
hospitalization is due to COVID-19 and will disregard all longer delays in our analyses accordingly.

As apparent from these data quality issues, the models we construct will have to account for, e.g.
the week-day effect and reporting delays, to make sensible inferences about the true state of the
epidemic.

2.4 Desiderata for epidemiological models
In what follows, we will give a non-exhaustive list of requirements we view as important when
modeling the COVID-19 epidemic. To start, we present a naïve analysis of reproduction numbers
and weekly growth factors in Germany to illustrate where this simple approach breaks down. This
will be our starting point to motivate on which effects to include in our modeling considerations.

For the reproduction number, we first estimate R̂ by the moment estimator (2.3) using the raw
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Figure 2.6: Naïve estimates of weekly growth factors ρ̂7 and reproduction numbers R̂ from April
2020 to the end of 2022. The estimates are based on daily (gray lines) and seven-day average (red
line) cases.

incidences It for the whole of Germany and the generation time distribution from Figure 2.1. As
these estimates incur the week-day effect present in the raw incidences, we repeat the estimation,
now based on the seven-day averages 1

7

∑3
τ=−3 It−τ , producing smoother estimates. Similarly, we

estimate the weekly growth factor once by the raw incidences, ρ̂7 = It
It−7

and the smoothed estimate
Equation (2.6).

The results of these procedures are displayed in Figure 2.6, and from this figure, we can deduce the
shortcomings of this naïve analysis. When considering the estimates based on daily incidences, the
week-day effect is very noticeable in the reproduction number estimates, which makes interpretation
of these estimates on any given day difficult. The growth factor estimates are affected less, because the
seven-day period coincides with that of the weekday effect. However, the growth factor estimates are
prone to large variances in periods of few incidences, e.g. in the summer of 2020. All estimators are,
naturally, susceptible to reporting artifacts, e.g. in the Christmas period highlighted in Figure 2.2.

In addition, we want to draw the reader’s attention to the local outbreak highlighted already
in Figure 2.2. In this period, a large share of the country-wide cases were reported in a single,
small, region, Gütersloh county. If we want to interpret the reproduction number and growth
factor estimates as representing the speed of the epidemic on the country scale, the estimates
corresponding to these dates are exaggerated: we would not expect the number of cases, on the
country level, to grow at the same speed as in this single county. Furthermore, the estimates in
the weeks following the outbreak are understated, because the outbreak now counts towards the
denominator in the estimates of R and ρ.

More problems arise when we consider inferences based on these estimators. While confidence
intervals for the reproduction numbers can be obtained by assuming a Poisson distribution, Equa-
tion (2.2), these confidence intervals concern only the marginal distribution of a single estimate.
Constructing joint confidence intervals for, e.g., the difference in reproduction numbers is not feasible,
as the dependencies given by the renewal equation model, (2.2) are non-linear and non-Gaussian.
While applying the estimators to the weekly average of cases does produce smoother estimates, it
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also introduces bias. Indeed, the renewal equation model is no longer valid for these incidences, as
1
7

∑3
τ=−3 It+τ is not independent of the past incidences 1

7

∑3
τ=−3 It−s+τ if t− s < 7.

Given these difficulties, we cannot hope for precise inferences using such simple models. Instead, we
will have to extend these models to account for, depending on the problem considered, some of the
following phenomena. For each of the phenomena we will give a short rationale on its importance
and offer some ideas on how we could include them in our models. See Section 3.1 for how we can
implement these phenomena concretely.

Regularization in time We would generally expect the day-to-day variation in contact, and
thus infection, behavior to be small. Even if new NPIs are introduced, a mix of early and late
adoption in different regions should lead to only small changes in R and ρ each day on the country
level.

To achieve this smoothing, we may model the absolute or relative change in the indicators to be
locally linear or constant.

Week-day effects Related to the previous point, week-day effects are a major obstacle in our
way to obtain smooth estimates of R and ρ over time. These effects are due to the reporting process,
where infections are more likely to be reported during the week than on the weekend.

While smoothing seems to remove week-day effects visually, the above analysis shows that for
reproduction number estimation, smoothing is not suited to properly account for week-day variation
in reporting. The reason for this is that the week-day effect can be thought of as the result of a
discrete-time convolution of reported infections and a delay distribution that is different for each day
of the week. Instead of smoothing, one should solve the inverse problem related to this convolution
instead, i.e. perform a deconvolution.

Reporting artifacts During periods of low attendance at the local health authorities, e.g. due
to holiday breaks, fewer cases are reported. This is visible, e.g., during the Christmas break in 2020,
see Figure 2.2. However, people are still infected and as such a backlog of accumulates. Once the
break is over, case numbers suddenly start to increase. As a result, the indicators we study first
point towards declining, then increasing cases, stabilizing again after the backlog of late reported
cases disappears from the denominators of R̂ and ρ̂.

To deal with this unsatisfactory behavior, we can mark the number of cases in the offending period
as missing. This will allow the fitting procedure to rearrange cases in this period so as to best fit
the data. If necessary, the total number of missing cases be fixed at the true number of cases in
that period, a linear constraint that is easily enforced, see Section 3.1.

The following three aspects are related to modeling the epidemic on a smaller scale.

Regional variation The outbreak in Gütersloh county, June 2020, shows what can go wrong if
we neglect regional variation of the spread of COVID-19. Similar to the effect of reporting artifacts,
reproduction number and growth factor estimates are not representative during and shortly after
the outbreak. Additionally, we would expect the spread of COVID-19 to be heterogeneous due to
other factors as well: different regions possess different levels of immunity, be it by infection or
vaccination, implement different NPIs and, arguably, exhibit different contact behavior: inhabitants
of rural counties will probably commute to work by car, while inhabitations of larger cities use
public transportation, exposing them to many more infectors. Furthermore, inhabitants can travel
between different regions, so our models should include an exchange of infections as well.

Deterministically modeling different reproduction numbers / growth factors for each of the 400
counties in Germany will be a difficult task, as the number of cases within each region can be quite
low, especially between waves, so uncertainty in estimates will be high. Instead, we will implement
an idea from small-area estimation, modeling for each day the indicator in a region as random
with common marginals. Similar to mixed effects models, this allows regions with few incidences
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to „borrow statistical strength“ from regions with large incidences. For fixed time-points, we have
already implemented such a model in (Burgard et al., 2021). Actually, restricting ourselves to the
same marginals is not necessary, as we will see in Section 4.2.

Exchange of cases between regions To include exchanged cases between regions in our models,

• German case data are reported on Landkreis level, performing analysis of each individual is
not sensible

• inhabitants travel between regions, and measures were taken on on regional level as well

• effects are not really spatial: euclidean distance is not so much of an issue but how closely
connected regions are (give some examples)

• also want to account for other regional effects such as different socio-economic settings ...

Count data this paragraph to modelling chapter

The Poisson distribution arises from the law of small numbers: if there is a large population where
every individual has, independently, a small probability of becoming infected in a small window
of time then the total number of infections in that window of time is well approximated by the
Poisson distribution. Indeed, the law of small numbers remains valid for small dependencies (Arratia,
Goldstein, and Gordon, 1990; Ross, 2011). However, incidences observed from the SARS-CoV-2
epidemic tend to follow a negative binomial distribution (S. Chan et al., 2021).

Reporting delays

Combining multiple data sources
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Chapter 3

Importance Sampling in State Space
Models

Contributions

The main contribution of this chapter consists of a rigorous comparison of two importance
sampling frameworks: the Cross-Entropy method (CE-method) and Efficient Importance
Sampling (EIS). Both methods determine optimal importance sampling proposals, but have,
until now, been studied in separate communities: the CE-method is popular in rare-event
estimation and engineering disciplines, while EIS is popular in the financial time series
community.
The contributions of the individual sections are as follows:

Modeling epidemiological desiderata with state space models

Gaussian Linear State Space Models This section is a condensed introduction to
Gaussian linear state space models (GLSSMs) and is loosely based on (Durbin and Koopman,
2012).

Partially Gaussian state space models

Importance Sampling
• We prove Lemma 3.5.
• Discussion surrounding (Chatterjee and Diaconis, 2018).
• We prove central limit theorems for both methods (Sections 3.4.2 and 3.4.3).
• Proof Proposition 3.5.

Interim discussion

Gaussian importance sampling for state space models derive an efficient algorithm
to apply the CE-method to state space models (Section 3.6.2)

Inference in PGSSMs

Comparison of Importance Sampling method Extensively compare both methods
on theoretical as well as practically relevant properties with instructive univariate and
multivariate examples (Section 3.8).

19
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State space models (SSMs) form a versatile class of statistical models that allow to modeling of
non-stationary time series data while providing a straightforward, mechanistic interpretation of the
time series’ dynamics. The main idea of these models is to introduce unobserved latent states
whose joint distribution is given by a Markov process and model the observed time series conditional
on these states. By exploiting this structure, inference in SSMs becomes computationally efficient,
i.e. the complexity of algorithms is usually linear in the number n of time points considered. In this
chapter, we provide a mathematical introduction to the theory of SSMs and the main tool we will
use for inference, importance sampling. Additionally, we will highlight how to use SSMs to model
the desiderata identified in Section 2.4.

Let us begin with the most general definition of a SSM.

Definition 3.1 (State Space Model). A SSM is a discrete time stochastic process (Xt, Yt)t=0,...,n

taking values in the measurable space (X × Y,BX ⊗ BY) such that

(i) The marginal distribution of the states (X0, . . . , Xn) is a discrete time Markov process, i.e.
for t = 1, . . . , n

P (Xt ∈ B|X0, . . . , Xt−1) = P (Xt ∈ B|Xt−1) a.s. (3.1)

for all measurable B ∈ BY .

(ii) Conditional on the state Xt and observation Yt−1, Yt is independent of Xs and Ys−1, s < t,
i.e.

P (Yt ∈ B|X0, . . . , Xt, Y0, . . . , Yt−1) = P (Yt ∈ B|Xt, Yt−1)

for all measurable B ∈ BY .

For notational convenience, we will write Xs:t = (Xs, . . . , Xt) for the vector that contains all states
from s to t, s ≤ t, dropping the first index if we consider the whole set of observations up to time t,
so X:t = X0:t, and dropping the subscript if we consider all states at once, X = X:n. Similarly we
set Ys:t = (Ys, . . . , Yt), Y:t = Y0:t and Y = Y:n.

picture of dependency structure

The models that we consider in this thesis will usually admit densities for the state transitions
w.r.t. a common dominating measure µX and similar for the observations w.r.t. some dominating
measure µY .

check whether models in Ch4 violate this

Notation 3.1 (Densities, conditional densities). We will use the standard abuse of notation for
densities that makes the type of density „obvious“ from the arguments used. This means that
p(x) is the density for all states X, p(xt|xt−1) the conditional density of Xt|Xt−1 and similarly for
observations: p(y|x) is the density of all observations Y conditional on all states X.

Note that this notation also implicitly includes the time t and allows for changes in, e.g., the state
transition over time.

When densities come from a parametric model parametrized by θ ∈ Θ ⊆ Rl and the dependence
of the model on θ is of interest, i.e. because we try to estimate θ, we indicate this by adding a
subscript to the densities. If this dependence is not of interest, e.g. because θ is fixed, we omit θ for
better readability.

In this notation, the joint density of a parametric SSM factorizes as

pθ(x, y) = pθ(x0, . . . , xn, y0, . . . , yn)

= pθ(x0)

n∏
t=1

pθ(xt|xt−1)
n∏
t=0

pθ(yt|xt, yt−1),
(3.2)

where pθ(y0|x0, y−1) = pθ(y0|x0).
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As inferences we make in this thesis depend on the SSM only through the likelihood we identify
almost sure versions of (X,Y ) with itself, i.e. all equations involving X or Y are understood almost
surely.

Remark 3.1 (dependence on Yt−1, dimensions). Contrary to the standard definition of a SSM,
our Definition 3.1 allows Yt to depend on Yt−1. As the models considered in Chapter 4 will make
extensive use of SSMs with this dependency structure we opt to use this non-standard definition
here. This is not a limitation of the standard definition: given a SSM of the form in Definition 3.1
we can transform it to the standard form by choosing states (Xt, Yt) ∈ X × Y and observations
Yt ∈ Y such that the SSM becomes a stochastic process on (X × Y)× Y.

Additionally, the goal of our inferences will always be the conditional distribution X|Y for a single,
fixed, set of observations Y . Assuming all densities exist, the conditional density p(x|y) is given, up
to a constant not depending on x, by Equation (3.2):

p(x|y) ∝ p(x, y) = p(x0)

n∏
t=1

p(xt|xt−1)
n∏
t=0

p(yt|xt, yt−1).

Thus, the dependence of Yt on Yt−1 only affects our inferences through p(yt|xt, yt−1), where, as
Yt−1 is observed, the argument yt−1 is fixed. Consequently, all results we present in this chapter for
SSMs where Yt depends only on Xt that concern only the conditional distribution X|Y = y carry
over to those given by Definition 3.1.

In most SSMs we consider in this thesis we use X = Rm, Y = Rp or Y = Zp so that X is m
dimensional and Y is p dimensional and equip these spaces with the usual σ-Algebras. Unless noted
otherwise, we use for µX the m-dimensional Lebesgue measure and for µY either the p-dimensional
Lebesgue measure (Y = Rp) or the p-dimensional counting measure (Y = Zp).

Given data (yt)t=0,...,n that may be modeled with a SSM the practitioner is confronted with several
tasks, which provide the structure of this chapter:

(i) Choosing a suitable, usually parametric, class of SSMs that include the effects of interest.

(ii) Fitting such a parametric model to the data at hand by either frequentist or Bayesian
techniques.

(iii) Infer about the latent states X from the observations Y by determining, either analytically
or through simulation, the smoothing distribution X|Y .

The first step, Item (i), requires that the practitioner specifies a joint probability distribution for
the states and observations (Section 3.1). Due to the assumed dependency structure, this boils
down to specifying transition kernels for the states and observations. The setting Definition 3.1
is too abstract to perform inference in, so further assumptions on the types of distributions for
the latent states and observations are needed. In this chapter, we will discuss Gaussian linear
state space model (GLSSM) (Section 3.2), where both the posterior distribution and the likelihood
are analytically available. For the epidemiological application we have in mind these are however
insufficient due to the non-linear behavior of incidences and the low count per region (Section 2.4).
Such observations are better modeled with distributions on the natural numbers, i.e. with a Poisson
or negative binomial distribution, both of which are exponential families of distributions. This
will lead to the class of Partially Gaussian state space models (PGSSMs) (Section 3.3) which will
become the main focus of our study.

Regarding the second step, Item (ii), a frequentist practitioner will want to perform maximum
likelihood inference on θ. While asymptotic confidence intervals for the maximum likelihood
estimator (MLE) θ̂ can be derived both theoretically and practically (Durbin and Koopman, 2012,
Chapter 7), they are, in the context of this thesis, usually of little interest. For these asymptotic
frequentist procedures to be meaningful, an appropriate central limit theorem has to hold. However,
as the time series we study are non-stationary and the dependence on parameters θ is allowed to be
arbitrary, it is in general not obvious that such a theorem holds for the model under consideration.
Instead, we choose to view this fitting as an Empirical Bayes procedure and our main practical
interest lies in analyzing the posterior distribution X|Y where we set θ equal to θ̂.
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To obtain the maximum likelihood estimates θ̂ one needs access to the likelihood

p(y) =

∫
Xn

p(x, y) dx =

∫
p(y|x)p(x) dx (3.3)

which is usually not analytically available. Direct numerical evaluation of Equation (3.3) is hopeless
due to the high dimensionality of the state space Xn. Instead, we will resort to simulation-based
inference by importance sampling (see Section 3.4), a Monte-Carlo method that approximates p(y)
by constructing a global tractable approximation to the integrand in Equation (3.3). Alternatively,
sequential Monte Carlo (SMC) methods, i.e. particle filters, that perform importance sampling
sequentially across the n+ 1 time steps can be used. We will not follow this approach for reasons
described further below, but refer the reader to the excellent reference (Chopin and Papaspiliopoulos,
2020) for an introduction to these methods.

The performance of these simulations depends crucially on our ability to construct distributions
that are close to the posterior p(x|y) but are easy to sample from. To this end, we construct either
Gaussian linear state space models (GLSSMs) (Section 3.6.1) in which sampling from the posterior
is analytically possible, or Gaussian Markov processes (Section 3.6.2) which are directly amenable
to simulation.

As an alternative to the MLE approach, a fully Bayesian approach would regard θ as random and
administer a prior distribution, say with density p(θ). In this setting, the main interest still lies
in determining the posterior distribution of X|Y = y, but due to the prior put on θ, its density,
should it exist, is now given by

p(x|y) =
∫
p(x, θ|y) dθ,

where p(x, θ|y) is the joint posterior of states and hyperparameters, conditional on observations
y. To tackle this problem, one may again use importance sampling methods, see e.g. (Durbin and
Koopman, 2012, Chapter 13.1), or use MCMC-methods tailored to SSMs, e.g. Particle-MCMC
(Chopin and Papaspiliopoulos, 2020, Chapter 16).

3.1 Modeling epidemiological desiderata with state space mod-
els

3.2 Gaussian Linear State Space Models
Gaussian linear state space models (GLSSMs) are the working horses of most methods used in
this thesis because they are analytically tractable and computationally efficient. Indeed for fixed
dimension of states m and observations p the runtime of algorithms that we consider in this thesis
is O(n).
Definition 3.2 (GLSSM). A Gaussian linear state space model (GLSSM) is a joint distribution
over states and observations (X,Y ) where states a.s. obey the transition equation

Xt+1 = AtXt + ut + εt+1 t = 0, . . . , n− 1, (3.4)

and observations a.s. obey the observation equation

Yt = BtXt + vt + ηt t = 0, . . . , n. (3.5)

Here At ∈ Rm×m and Bt ∈ Rp×m are matrices that specify the systems dynamics. The innovations
(εt+1)t=0,...,n−1 and measurement noise (ηt)t=0,...,n and the starting value X0 ∼ N (EX0,Σ0)
are jointly independent. Furthermore, εt+1 ∼ N (0,Σt) and ηt ∼ N (0,Ωt) are centered Gaussian
random variables and ut ∈ Rm, t = 0, . . . , n− 1, vt ∈ Rp, t = 0, . . . , n are deterministic biases.

Remark 3.2. From Equation (3.4) it is easy to see that the states X = (X0, . . . , Xn) form a
Gaussian Markov process and that conditional on Xt, t ∈ {0, . . . , n}, Yt is independent of Xs and
Ys, s < t. Thus A GLSSM is indeed a SSM.
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The defining feature of a GLSSM is that the joint distribution of (X,Y ) is Gaussian, as (X,Y )
may be written as an affine combination of the jointly Gaussian (X0, ε1, . . . , εn, η0, . . . , ηn) and it is
often useful to perform inferences in terms of innovations and measurement noise instead of states,
see e.g. (Durbin and Koopman, 2012, Section 4.5).

As the joint distribution of (X,Y ) is Gaussian, so are conditional distributions of states given any
set of observations.

Lemma 3.1 (Gaussian conditional distributions). Let (X,Y ) be jointly Gaussian with distribution
N (µ,Σ) where

µ = (µX , µY )

and
Σ =

(
ΣXX ΣXY
ΣY X ΣY Y

)
,

where µ and Σ are partitioned according to the dimensions of X and Y .

Then the following holds:

(i) If ΣY Y is non-singular, X|Y = y follows a Gaussian distribution with conditional expectation

µX|Y=y = E (X|Y = y) = µX +ΣXY Σ
−1
Y Y (y − µY )

and conditional covariance matrix

ΣX|Y=y = Cov (X|Y = y) = ΣXX − ΣXY Σ
−1
Y Y ΣY X .

(ii) In particular, let X ∼ N (µ,Σ) and Y = BX+ε for a matrix B ∈ Rp×m and Rp ∋ ε ∼ N (0,Ω)

independent of X where Ω ∈ Rp×p . Then, as EY = Bµ, Cov (X,Y ) = Cov (Y,X)
T
= ΣBT

and Cov (Y ) = BΣBT +Ω, we have

E (X|Y = y) = µ+K(y −Bµ)

and
Cov (X|Y = y) = Σ−KΣKT = (I −KB) Σ,

as long as BΣBT +Ω is non-singular. Here K = ΣBT
(
BΣBT +Ω

)−1.
(iii) If ΣXX is non-singular, then Y −BX is independent of X for B = ΣY XΣ

−1
XX and we may

write

Y = BX + v + η

for an η ∼ N (0,Ω) with covariance matrix Ω = ΣY Y −ΣY XΣ−1XXΣXY independent of X, and
v = µY −BµX .

(iv) Suppose that (X,Y, Z) is jointly normal mean µ and covariance matrix Σ, partitioned in the
same way. If the conditional distribution of X given Y = y and Z = z is given by

X|Y = y, Z = z ∼ N (Ky +Gz + δ,Ξ),

then the conditional distribution of X given only Y = y is

X|Y = y ∼ N
(
Ky +GµZ|Y=y + δ,Ξ +GCov(Z|Y )GT

)
.

Remark 3.3 (generalized inverse). If ΣY Y in Lemma 3.1 (i) is singular, the statement remains
true if we choose as Σ−1Y Y a generalized inverse of ΣY Y , see (Rao, 2002, 8.a Note 3). A generalized
inverse for a matrix A ∈ Rm×p is any matrix A− ∈ Rm×p such that AA−A = A. Given a singular
value decomposition A = UDV T , we may obtain the Moore-Penrose inverse A† = V D−UT of A,
which is a generalized inverse of A, by inverting the non-zero diagonal elements of D.
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Proof. For the first statement, we refer the reader to (Durbin and Koopman, 2012, Chapter 4,
Lemma 1).

The second statement follows from substituting the value of K.

The third statement follows from noting that Y − BX =
(
−B I

)(X
Y

)
follows a Gaussian

distribution. A quick calculation reveals that

Cov (Y −BX,X) = ΣY X −BΣXX = ΣY X − ΣY X = 0,

showing the independence. Thus η = Y − BX − δ follows a centered Gaussian distribution and
equating covariance matrices, we see that Ω has the desired form.

For the final statement, notice that ξ = X −KY −GZ − δ fulfills

ξ|Y = y, Z = z ∼ N (0,Ξ)

which does not depend on y or z. Thus the unconditional distribution of ξ is N (0,Ξ) as well, and ξ
is independent of (Y,Z). Rewriting X in terms of Y,Z and ξ, we obtain

X = KY +GZ + δ + ξ,

and so

E (X|Y = y) = Ky +GE(Z|Y = y) + δ,

as well as

Cov (X|Y = y) = Cov (KY +GZ + δ + ξ|Y = y)

= Cov (GZ + ξ|Y = y)

= Cov(GZ + ξ)− Cov(GZ + ξ, Y )Σ−1Y Y Cov(Y,GZ + ε)

= GΣZZG
T + Ξ−GΣZY Σ−1Y Y ΣY ZGT

= Ξ+GCov(Z|Y )GT .

After having observed Y = y, our main interest lies in the conditional distribution of states X given
Y = y, which we could obtain by applying Lemma 3.1, i.e. where B = block-diag(B0, . . . , Bn) and
Ω = block-diag (Ω0, . . . ,Ωn). However, this would require inversion of the (n+1)p× (n+1)p matrix
(BΣB +Ω) which becomes numerical infeasible quickly. Instead, we can exploit the sequential
structure of the GLSSM, which will allow us to perform conditioning on only a single observation
at a time.

To this end, let us denote by X̂t|s the conditional expectation of Xt given a set of observations y:s
and by Ξt|s the conditional covariance matrix of Xt given Y:s = y:s. Then

Xt|Y:s = y:s ∼ N
(
X̂t|s,Ξt|s

)
.

For a given t, three values of s are of particular interest: If s = t− 1 determining this conditional
distribution is called a prediction problem, if s = t this is a filtering problem and if s =
n a smoothing problem, and we call the distributions we seek the predictive, filtering
or smoothing distribution respectively. Similarly we define Ŷt|s = E (Yt|Y:s = y:s) to be the
conditional expectation of Yt given Y:s = y:s, note that Ŷt|s = Yt if s ≥ t. Finally, let Ψt|s =
Cov (Yt|Y:s = y:s) be the conditional covariance matrix of Yt given Y:s = y:s. Again Ψt|s = 0 if s ≥ t.
These distributions may be obtained efficiently using the celebrated Kalman filter (Algorithm 1)
and smoother (Algorithm 2) algorithms, which we state here for completeness.
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Algorithm 1 Kalman filter, with runtime O(n(m2 + p3))

Require: GLSSM (Definition 3.2), observations y0, . . . , yn.
1: A−1 ← I ∈ Rm×m ▷ Identity Matrix
2: u−1 ← 0 ∈ Rm

3: X̂−1|−1 ← EX0

4: Ξ0|−1 ← 0m×m
5: ℓ−1 ← 0
6: for t← 0, . . . , n do
7: X̂t|t−1 ← At−1X̂t−1|t−1 + ut−1 ▷ prediction
8: Ξt|t−1 ← At−1Ξt−1|t−1ATt−1 +Σt

9: Ŷt|t−1 ← BtX̂t|t−1 + vt
10: Ψt|t−1 ← BtΞt|t−1BTt +Ωt
11: Kt ← Ξt|t−1BTt Ψ

−1
t|t−1 ▷ filtering

12: X̂t|t ← X̂t|t−1 +Kt(yt − Ŷt|t−1)
13: Ξt|t ← Ξt|t−1 −KtΨt|t−1KT

t

14: ℓt ← ℓt−1 +
p
2 log(2π) +

1
2 log detΨt|t−1 +

1
2

(
yt − Ŷt|t−1

)T
Ψ−1t|t−1

(
yt − Ŷt|t−1

)
▷ NLL

15: end for

In Algorithm 1 every time point t = 0, . . . , n is processed in the same way, with a two-step procedure:
first we predict the new observation Yt based on Y:t−1. Using the linearity of the system as well as
the assumed conditional independence, this is achieved by applying the system dynamics to the
current conditional expectation and covariance matrices. After Yt has been observed, we can update
the conditional distribution of the states by appealing to Lemma 3.1. For a rigorous derivation of
the Kalman filter, we refer the reader to (Durbin and Koopman, 2012, Chapter 4) or the excellent
monograph of (Schneider, 1986).

The Kalman filter is very efficient: each loop iteration requires inversion of the p× p matrix Ψt|t−1.
Assuming this operation dominates the time complexity, e.g. because m ≈ p, the time complexity of
the Kalman filter is O(nm3), a drastic improvement over the naïve O(n3m3), obtained by applying
Lemma 3.1 to the joint distribution of (X,Y ). Similarly, the space complexity of Algorithm 1 is
O
(
n
(
m2 + p2

))
, and grows only linearly in the number of time steps n.

Notice that the Kalman filter iteratively calculates the negative log-likelihood ℓt

ℓt = − log p(y:t) = − log

t∑
s=0

log p(ys|y:(s−1))

while filtering. This is possible because of the dependency structure of the GLSSM, which makes
the increments in ℓt tractable, as

Ys|Y:(s−1) ∼ N
(
Ŷs|s−1,Ψs|s−1

)
,

for s = 0, . . . , n, which is shown in the derivation of the Kalman filter. Thus, the Kalman filter
enables us to perform MLE by giving us access to ℓn.

historical comment

Depending on the situation at hand, one of the many variants of the basic algorithm presented in
Algorithm 1 may be used. If the inversion of Ψt|t−1 is numerically unstable, the filtered covariance
matrices Ξt|t may become numerically non-positive definite. In this case, the square root filter and
smoother (Morf and Kailath, 1975) may be used. It is based on Cholesky roots of the involved
covariance matrices, ensuring them to be PSD.

When the dimension of observations is much larger than that of the states, p≫ m, the information
filter (D. Fraser and Potter, 1969) can be used. Instead of performing operations on the covariance
matrices, i.e. Ξt|t−1 and Ψt|t−1, the information filter operates on their inverses, the precision
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matrices Ξ−1t|t−1 and Ψ−1t|t−1 as well as rescaled states Ξ−1t|t−1X̂t|t−1 and observation Ψ−1t|t−1Ŷt|t−1
estimates. This makes the filtering step more efficient, as the computationnaly most intensive step
is the calculation of Ψ−1t|t−1. However the price one pays is that the prediction step now requires
inversion of a m×m matrix, and as such the computational gains only set in when p is sufficiently
large compared to m Assimakis, Adam, and Douladiris, 2012. Note that for the models we consider
in Chapter 4 this is usually not the case.

check that this really holds

If the dimensions of the model are so large that calculating the m×m and p×p covariance matrices
becomes an issue, the simulation based Ensemble Kalman filter (EnKF) (Evensen, 1994) can be used.
Instead of calculating the covariance matrices analytically, the EnKF stores a particle approximation
to the Gaussian filtering distribution and iteratively performs a prediction and update step with a
particle approximation, similar to the analytical update the Kalman filter performs. Despite being
based on linear Gaussian dynamics, the EnKF is successfully employed in many high-dimensional
non-linear non Gaussian problems (Katzfuss, Stroud, and Wikle, 2016).

For non-linear problems of moderate dimension, i.e. those where we replace the right-hand side of
both state (Equation (3.4)) and observation (Equation (3.5)) equations by non-linear functions,
other variants such as the Extended Kalman filter (EKF) (Jazwinski, 1970) and the unscented
Kalman filter (UKF) (Julier and Uhlmann, 1997) may be used. The EKF applies the Kalman
filter to a linearization of the non-linear system around the current conditional means X̂t|t−1 and
X̂t|t. If the systems dynamics are highly non-linear, this approximation can fail. Alternatively, the
UKF, which is based on the unscented transform, directly approximates the predicted means and
covariance matrix, by constructing a set of deterministic points that are propagated through the
systems dynamics.

more on this

In the context of COVID-19, variants of the Kalman filter have been employed to analyse the
time-varying behavior of epidemiological parameters. Usually the models start from some theoretical,
e.g. compartmental, model of how the epidemic spreads. After time-discretization and possibly
linearization, one ends up with a GLSSM, to which the Kalman filter or one of its variants may be
applied. In (Arroyo-Marioli et al., 2021) the authors construct a simple GLSSM to reconstruct the
time-varying reproduction number from observed growth factors, exploiting the linear relationship
between the two quantities in the SIR compartmental model and using the Kalman filter and
smoother to perform inference. (Song et al., 2021; Zhu et al., 2021) directly apply the EKF to
time-discretized compartmental models, fitting them either to simulated (Zhu et al., 2021) or
real (Song et al., 2021) data. Similarly, (Engbert et al., 2020) use the EnKF to fit a stochastic
compartmental model to German regional data, where the EnKF allows to deal with the non-linear
and non-Gaussian properties on these small spatial scales.

algorithmen konsistent mit gets und =, return value

algorithmen konsistent t, t -1

Algorithm 2 Kalman smoother. Note that the Kalman filter already outputs the smoothed last
state X̂n|n and covariance Ξn|n.

Require: GLSSM (Definition 3.2), outputs from Kalman filter (Algorithm 1)
1: for t← n− 1, . . . , 0 do
2: Gt = Ξt|tAtΞ

−1
t+1|t

3: X̂t|n = X̂t|t +Gt

(
X̂t+1|n − X̂t+1|t

)
4: Ξt|n = Ξt|t −Gt

(
Ξt+1|t − Ξt+1|n

)
GTt

5: end for

The Kalman smoother (Algorithm 2) computes the marginal distributions Xt|Y for t = 0, . . . , n.
Upon closer inspection, the mean and covariance updates resemble that of the Kalman filter
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(Algorithm 1). This is no coincidence: By the assumed dependence structure, we obtain the following
lemma, which will allow us to prove the recursions.

Lemma 3.2 (conditional indepdence from future observations). Let t ∈ {0, . . . , n− 1} and s > t.
In a GLSSM, conditional on Xt+1, Xt is independent of Ys, s > t.

Proof. As s > t, we have

p(xt, ys|xt+1) = p(ys|xt+1, xt)p(xt|xt+1) = p(ys|xt+1)p(xt|xt+1)

where the second equality follows from the dependency structure of the model.

We can now sketch the proof for the Kalman smoother recursions, based on the arguments in
(Chopin and Papaspiliopoulos, 2020, Chapter 7.3). By the preceding lemma, the conditional
distribution of Xt given Y:n and Xt+1 is the same as that given Y:t and Xt+1. We may now regard
Xt+1 = AtXt + ut + εt+1 as an additional observation at time t, and use the Kalman filter update
to determine this conditional distribution:

Xt|Y:n = y:n, Xt+1 = xt+1 ∼ N
(
X̂t|t +Gt(xt+1 − X̂t+1|t),Ξt|t −GtΞt+1|tG

T
t

)
.

As X̂t|t and X̂t+1|t are linear functions of Y:n (actually Y:t), we may apply the last statement of
Lemma 3.1, to see that, conditional on Y:n = y:n, the distribution of Xt is Gaussian with mean

X̂t|t +Gt

(
X̂t+1|n − X̂t+1|t

)
and covariance matrix

Ξt|t −GtΞt+1|tG
T
t +GtΞt+1|nG

T
t = Ξt|t −Gt

(
Ξt+1|t − Ξt+1|n

)
GTt .

These quantities are calculated by the Kalman smoother (Algorithm 2).

Going back to the proof of the last statement in Lemma 3.1, we see that we may actually write

Xt = X̂t|t +Gt(Xt+1 − X̂t+1|t) + ξt, (3.6)

for a ξt ∼ N
(
0,Ξt|t −GtΞt+1|tGt

)
which is independent of Y:n and Xt+1. This recurrence may be

used to generate samples from the joint smoothing distribution, which is useful if one is interested
in non-linear functionals of the smoothing distribution that involve multiple states at once, such as
a moving median or maximum. It is based on the following decomposition of the smoothing density

p(x|y) = p(xn|y)
0∏

t=n−1
p(xt|xt+1, y:t).

The resulting algorithm is called the Forwards Filter, Backwards Sampling (FFBS) (Algorithm 3)
and was first described in (Frühwirth-Schnatter, 1994) in the context of a data augmentation
algorithm for Bayesian analysis of GLSSM. In this paper, the hyperparameters θ follow an inverse
gamma distribution, and one is interested in the posterior marginals of p(θ|Y ), e.g. to determine
the posterior marginals of states p(X|Y ) using MC-integration.

Remark 3.4 (regularity of Σt and Ωt). Throughout this section, we have assumed, either explicitly
or implicitly, that the innovation and observation covariance matrices Σt and Ωt are non-singular,
i.e. SPD.

For the Kalman filter we require that for every t, Ψt|t−1 is non-singular, i.e. that we can apply
Lemma 3.1 (i). This is fulfilled as soon as Ωt is non-singular, which is a reasonable assumption in
most models. Following the remark after Lemma 3.1, we could also replace Ψ−1t|t−1 in Algorithm 1
by its Moore-Penrose inverse.

A similar argument can be made for singular Ξt+1|t, where we replace Ξ−1t+1|t by its Moore-Penrose
inverse in the Kalman smoother (Algorithm 2) and the FFBS (Algorithm 3).
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Algorithm 3 Forwards filter, backwards smoother (Frühwirth-Schnatter, 1994, Proposition 1)
Require: GLSSM (Definition 3.2), outputs from Kalman filter (Algorithm 1)
1: Simulate X̌n|n ∼ N (X̂n|n,Ξn|n)
2: for t← n− 1, . . . , 0 do
3: Gt = Ξt|tAtΞ

−1
t+1|t

4: Simulate ξt ∼ N (0,Ξt|t −GtΞt+1|tGTt )

5: Set X̌t|n = X̂t|t +Gt

(
X̌t+1 − X̂t+1|t

)
+ ξt

6: end for

The attractive feature of GLSSMs is that a large part of inference is analytically feasible: we may
calculate the likelihood, smoothing distribution and sample from it. However, the modeling capacity
of GLSSMs is limited: most interesting phenomena in the context of this thesis follow neither linear
dynamics nor are well modeled by a Gaussian distribution, see also the discussion in Section 3.1.

Nevertheless, linearization of non-linear dynamics suggests that GLSSMs may have some use as
approximations to these more complicated phenomena, provided they are sufficiently close to
Gaussian models, e.g. unimodal and without heavy tails. We start to move away from linear
Gaussian models by allowing observations that are non-Gaussian.

3.3 Partially Gaussian state space models
The distribution of observations is never Gaussian - all we may hope for is that the data-generating
mechanism is close enough to a Gaussian distribution that inferences made in an GLSSM may
carry over. For epidemiological models, Gaussian distributions may be appropriate if incidences are
high, e.g. during large outbreaks in a whole country. When case numbers are small, the discrete
nature of incidences is better captured by a distribution on N0, and standard distributions used
are the Poisson and negative binomial distributions, see e.g. (Lloyd-Smith et al., 2005), see also
the discussion in Section 3.1. We thus want SSMs where observations are allowed to follow these
non-Gaussian distributions.

Concerning the distribution of states, we keep the linear Gaussian assumption, i.e. Equation (3.4).
As argued in Section 3.1,

do this there

using Gaussian states and transitions allows for flexible modeling of many epidemiological desiderata.
Furthermore, keeping the states Gaussian will enable us to use Efficient Importance Sampling (EIS)
effectively, by constructing approximations via GLSSM which possess the same state dynamics.
Alternatively, t-distributed innovations or more general transition kernels could be employed and we
refer the interested reader to (Durbin and Koopman, 2012, Part II) for a selection of these models.
The following definition is that of (Koopman, Lit, and Nguyen, 2019), which itself is an extension
of earlier work of (Shephard, 1994). (Shephard, 1994) considered only SSMs where, conditional on
another Markov process Z = (Zt)t=0,...,n, model is a full GLSSM. While this formulation allows
for efficient inference if the distribution of Z leads to a tractable conditional distribution Z|(X,Y ).
As their definition involves a conditional GLSSM, the observations still take values in Rp, not
Np as is necessary for our endeavors. Thus we opt for the definition presented in (Koopman, Lit,
and Nguyen, 2019), where we replace the Gaussian observations (Equation (3.5)) with arbitrary
distributions.

Definition 3.3 (Partially Gaussian state space model (PGSSM)). A Partially Gaussian state space
model (PGSSM) is a joint distribution for (X,Y ) where states X follow Equation (3.4), i.e.

Xt+1 = AtXt + ut + εt+1 t = 0, . . . , n− 1,

with X0 ∼ N (0,Σ0), εt ∼ N (0,Σt) for t = 1, . . . , n and X0, (εt)t=1,...,n jointly independent.
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Furthermore, the observations Y form a conditional Markov process, conditional on states X, of
the following form:

p(y|x) =
n∏
t=0

p(yt|xt, yt−1).

Here p(yt|xt, yt−1) are allowed to take any arbitrary distribution1.

It is straightforward to check that a PGSSM is indeed a SSM.

Remark 3.5. Recalling Remark 3.1, if our main interest lies in the conditional distribution X|Y = y
for a fixed set of observations y, it will suffice to consider models where

p(y|x) =
n∏
t=0

p(yt|xt)

holds, and we will do so in the following to enhance readability. At points where this distinction
matters, e.g.

add example

, we will give appropriate remarks.

Both the Poisson and negative binomial belong to the class of exponential family distributions. As
such, their densities have a convenient structure, allowing only for a linear interaction between
the natural parameter and the densities argument. We refer to (Brown, 1986) for a comprehensive
treatment of exponential families and use their definitions throughout this section.

Definition 3.4 (exponential family). Let µ be a σ-finite measure on Rp and denote by

Ψ =

{
ψ ∈ Rp :

∫
exp

(
ψT y

)
dµ(y) <∞

}
the set of parameters ψ such that the moment-generating function of µ is finite. For every ψ ∈ Ψ

pψ(y) = Z(ψ)−1 exp(ψT y)

defines a probability density with respect to the measure µ, where

Z(ψ) =

∫
exp

(
ψTx

)
dµ(y)

is the normalizing constant. We call both the densities pψ and induced probability measures

Pψ(A) =

∫
A

pψ(y) dµ(y),

for measurable A ⊂ Rp, a standard exponential family.

Conversely, let Pψ, ψ ∈ Ψ be a given parametric family of probability measures on some space Y
that is absolutely continuous with respect to a common dominating measure µ. Suppose there exist
a reparametrization η : Ψ→ Rp, a statistic T : Y → Rp and functions Z : Ψ→ R, h : Y → R, such
that

pψ(y) =
dPψ

dµ
= Z(ψ)h(y) exp

(
η(ψ)TT (y)

)
,

then we call Pψ, ψ ∈ Ψ and pψ, ψ ∈ Ψ a p-dimensional exponential family and (Pψ)ψ∈Ψ a
p-dimensional natural exponential family. If η(ψ) = ψ we call ψ the natural parameter. If
T (y) = y, we call y the natural observation. By reparametrization (in ψ) and sufficiency (in y)
every p-dimensional exponential family can be written as an equivalent standard exponential family,
see the elaborations in (Brown, 1986, Chapter 1).

1Recall that we have not specified µY , so it is always possible to use p = 1Y , the constant function.
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Exponential families have the attractive property that they are log-concave in their parameters.
As such the Fisher-information is always positive semidefinite, which will be crucial in defining
surrogate Gaussian models in Section 3.6.

Lemma 3.3 (log-concavity of exponential family distributions). Let pψ, ψ ∈ Ψ be a natural p-
dimensional exponential family and Ψ convex and open in Rp. In this case ψ 7→ log pψ(y) is concave
for every y ∈ Rp.

Proof. As log pψ(y) = − logZ(ψ) + ψT y it suffices to show that ψ 7→ logZ(ψ) is convex. However,

ψ 7→ logZ(ψ) = log

∫
exp

(
ψT y

)
dµ(y)

is the cumulant generating function of the base measure µ, which is convex (Billingsley, 1995, p.
144f).

Additionally, the moment generating function ψ 7→ Z(ψ) is smooth on the interior of Ψ and allows
to switch the order of integration and differentiation.

Theorem 3.1 ((Brown, 1986, Theorem 2.2, Corollary 2.3)). Let ψ ∈ intΨ be an interior point.
Then the moment generating function Z : Ψ→ R is infinitely often differentiable with derivatives

∂|α|

∂αψ
Z(ψ) =

∫
yα exp

(
ψT y

)
dµ(y)

for any multi-index α ∈ Nk.

Additionally, the gradient of logZ, ∇ψ logZ(ψ) is given by

∇ψ logZ(ψ) = ET (X),

and the Hessian of logZ, Hψ logZ(ψ) by

Hψ logZ(ψ) = Cov(T (X)),

where X ∼ Pψ.

Example 3.1 (Poisson & negative binomial distribution). Both the family of Poisson distributions,
parameterized by rate λ and the negative binomial distribution, parameterized by success probability
p with fixed overdispersion r form an exponential family.

The log-density of the Poisson distribution with rate λ, Pois(λ) w.r.t. the counting measure on N0

is
log pλ(x) = −λ+ x log λ− log x!.

Thus the Poisson distribution forms an exponential family with natural parameter log λ, natural
statistic id (the identity), base measure h(x) = 1

x! and log-partition function Z(λ) = exp (−λ).
The log-density of the negative binomial distribution with overdispersion parameter r and success
probability p NegBinom (p, r) is

log pr,p(x) = log

(
x+ r − 1

x

)
+ x log(1− p) + r log p.

For fixed r these distributions form an exponential family with natural parameter log(1−p), natural
statistic T = id, base measure h(x) = log

(
x+r−1
x

)
and log-partition function Z(p) = r log p.

In this parametrization the mean of the NegBinom(p, r) distribution is µ = r 1−pp and its variance
is r 1−pp2 . An alternative parametrization that will become useful Chapter 4 is that by the log mean
ξ = logµ and overdisperision r. As p = r

r+µ , this parametrization has log-density

log pr,ξ(x) = log

(
x+ r − 1

x

)
+ xξ − (r + x) log(exp ξ + r)− r log r,
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which does not form a natural exponential family. However, it retains the log-concavity of Lemma 3.3,
as a quick calculation reveals that

∂2ξ2 log pr,ξ(x) = −(r + x)
r exp(−ξ)

(r exp(−ξ) + 1)2
< 0

for all x ∈ N0.

The models we study in Chapter 4 belong, for the most part,

check

to the following subclass of PGSSM models.

Definition 3.5 (Exponential Family Partially Gaussian state space model (EGSSM)). An Expo-
nential Family Partially Gaussian state space model (EGSSM) is a PGSSM where the conditional
distribution of Yt given Xt comes from an exponential family with respect to a base measure µt, i.e.

p(yt|xt) = ht(yt)Zt(xt) exp
(
ηt(xt)

TTt(yt)
)

for suitable functions ht, Zt, ηt, Tt. If Yt in the PGSSM is allowed to depend on the previous Yt−1,
the functions ht, Zt, ηt and Tt may depend on yt−1.

If, additionally, matrices Bt ∈ Rp×m exist, such that for the signal St = BtXt ∈ Rp, Yt only
depends on Xt through St, i.e. it holds

p(yt|xt) =
p∏
i=1

hit(y
i
t)Z

i
t(st) exp

(
ηit(s

i
t)T (y

i
t)
)
,

for functions hit : R→ R, Zit : R→ R, ηit : R→ R, T : R→ R, i = 1, . . . p, we say the Logconcave
state space model (LCSSM) has a linear signal, similar to the treatment in (Durbin and Koopman,
2012, Part II).

Remark 3.6. To simplify notation we will usually assume that the functions h, Z and T are the
same for all t (and i, if the LCSSM has a linear signal) and drop in our notation the dependence of
h, Z, and T on t (and i). Similarly, we assume that the base measure µt is the same for all t.

From Lemma 3.3, we immediately obtain the following results (Durbin and Koopman, 2012, Section
10.6.4)

Lemma 3.4 (log-concavity of the smoothing distribution). Consider an EGSSM, where ηt = id
for all t. Then x 7→ log p(x|y) is concave for every a.e. Y = y.

Proof. We may write
log p(x|y) = log p(y|x) + log p(x)− log p(y),

where the last term does not depend on x. log p(x) is concave, as p(x) is the joint density of a
multivariate Gaussian distribution. Furthermore

log p(y|x) =
n∑
t=0

log p(yt|xt, yt−1),

which, by Lemma 3.3 is concave in x.

Notice that the dependence of Yt on Yt−1 does not influence the statement of this lemma, as we are
interested in properties of x 7→ p(x|y).
As in the previous chapter, after having observed Y , one is interested in the conditional distribution
of states X, given Y . If the observations are not Gaussian, this is a difficult task as the distribution
is not analytically tractable. Instead, approximations, e.g. the Laplace approximation (LA), which
will exploit the log-concavity developed here or simulation-based inference, e.g. importance sampling
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(Sections 3.4 and 3.6), sequential Monte Carlo (Chopin and Papaspiliopoulos, 2020) or MCMC-
methods (Brooks et al., 2011) are used. Similarly, fitting hyperparameters ψ by maximum likelihood
inference becomes more difficult as evaluating ℓ(ψ) = p(y) =

∫
p(x, y) dx is not analytically

available, thus requiring numerical or simulation methods for evaluation and gradient descent or
EM-techniques for optimization, see Section 3.7.

In this thesis, we will focus on importance sampling methods, which are the focus of the next
section.

3.4 Importance Sampling
Importance sampling is a simulation technique that allows us to approximate integrals w.r.t a
measure of interest, the target, by sampling from a tractable approximation, the proposal, instead,
thus performing Monte-Carlo integration. To account for the fact that we did not sample from
the correct probability measure, we weight samples according to their importance. As the user
has freedom in the choice of approximation (except for some technical conditions), importance
sampling also acts as a variance reduction technique with better approximations resulting in smaller
Monte-Carlo variance. Thus the role that importance sampling plays is twofold: first, it enables
Monte-Carlo integration even if sampling from the target is not possible, and second it allows us
to do so in an efficient way by choosing, to be defined precisely below, the approximation in an
optimal way.

Alternative approaches to importance sampling for performing inference in SSMs include Markov
chain Monte Carlo (MCMC) and SMC. Recall from the introduction to this chapter that this
inference concerns three objectives: maximum likelihood estimation, i.e. evaluation and optimization
of the likelihood, access to the posterior distribution X:n|Y:n and prediction of future states and
observations. Let us give a concise comparison of these alternative approaches, weighing their
advantages and disadvantages over importance sampling, in particular for the SSMs that this thesis
deals with.

MCMC (Brooks et al., 2011) is a simulation technique that allows to simulation of correlated samples
from a target distribution by constructing a Markov chain that has as its invariant distribution the
desired distribution. For Metropolis-Hastings MCMC, one needs access to the density of the sought
distribution up to a constant to simulate a step in the Markov chain. While this method is very
general, it fails in high dimensions and current research in MCMC methods investigates this
quotes

curse of dimensionality

citep something

.
MCMC vs. IS

SMC (Chopin and Papaspiliopoulos, 2020) or particle filters, use sequential importance sampling to
provide a particle approximation to the filtering distributions Xt|Y:t, essentially decomposing the
problem into a n importance sampling steps. To avoid particle collapse, SMC is usually equipped with
a resampling step once the effective sample size of the current set of particles drops below a specified
level. Once the final filtering distribution Xn|Y:n is approximated, the smoothing distribution may
be obtained in several ways ...

look up Chopin

.

Conveniently, SMC allows us to approximate the likelihood ℓ(θ) for a single parameter by a single pass
of the particle filter. However, the discrete nature of resampling makes the approximated likelihood
non-continuous, complicating maximum likelihood inference. (Chopin and Papaspiliopoulos, 2020,
Chapter 14) discusses several strategies: the first amounts to importance sampling of the order as
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discussed in this thesis, where one fixes a reference parameter θ0 to perform importance sampling
with pθ0(x|y) against pθ(x|y). The second strategy only works in the univariate case and consists of
approximating the non-continuous inverse CDFs appearing in the resampling step by continuous
ones. Finally, if the dependence on the hyperparameters θ allows for application of the EM-algorithm,
it may be used to perform the optimization. Contrary to SMC, the global importance sampling
approach we discuss in Sections 3.6 and 3.7 allows us to perform
...

This chapter proceeds with a general treatment of importance sampling, loosely based on (Chopin
and Papaspiliopoulos, 2020, Chapter 8) and (Durbin and Koopman, 2012, Chapter 11). Subsequently,
we will focus our attention on methods to obtain good importance sampling proposals.

Suppose we have a function h : X → R whose integral w.r.t. to some measure µ,

ζ =

∫
X
h(x) dµ(x),

exists and whose value we want to compute. Furthermore, suppose that we can write∫
X
h(x) dµ(x) =

∫
X
f(x) dP(x) = P[f ],

operatorschreibeweise everywehere

for a probability measure P and function f : X → R, e.g. because P = pµ and h(x) = f(x)p(x)
µ-a.s. . Let G be a another probability measure on X such that fP is absolutely continuous with
respect to G, fP≪ G, and let v = dfP

dG be the corresponding Radon-Nikodym derivative. Then

ζ = P[f ] =

∫
X
f(x) dP(x) =

∫
X

(
dfP

dG

)
dG(x) = G[v]

which suggests to estimate ζ by Monte-Carlo integration:

ζ̂ =
1

N

N∑
i=1

v(Xi),

the importance sampling estimate of ζ. The importance samples Xi, i = 1, . . . , N have distribution
G, and will usually be i.i.d. For this procedure to work, we want ζ̂ to fulfill a law of large numbers
and a central limit theorem, so we will want v ∈ L2(G), where Lp(ν) is the space of p-times
ν-integrable functions for a measure ν. The i.i.d. assumption could also be dropped, e.g. when we
employ antithetic variables, see (Ripley, 2009, Section 5.3). Here we call ζ̂ the importance sampling
estimate of ζ.

If v ∈ L2(G) and under i.i.d. sampling the Monte-Carlo variance of ζ̂ is
Var(v(Xi))

N , and so naturally
we want Var

(
v(Xi)

)
to be small to ensure fast convergence of ζ̂. As v depends on the proposal G,

and we have the flexibility to choose G, importance sampling acts as a variance reduction technique.

A classical result is that the minimum MSE proposal G∗ has a closed form. Indeed it is given by
the total variation measure of fP, renormalized to be a probability measure, which can be shown
by a simple application of Jensen’s inequality.

Proposition 3.1 (Chopin and Papaspiliopoulos, 2020, Proposition 8.2). [minimum MSE proposal]
The proposal G∗ that minimizes the MSE of importance sampling is given by

G∗ =
|f |

P [|f |]P.

Unfortunately, this optimality result has no practical use, indeed if f is positive we would need
to obtain P[f ] first, the overall target of our endeavor. Additionally, sampling from G∗ is not
guaranteed to be practically feasible.
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If the Radon-Nikodym derivative w = dP
dG exists, then v = fw, which, for the problems we will

study, is usually the case. In this case

ζ̂ =
1

N

N∑
i=1

f(Xi)w(Xi),

where w(Xi) is called the importance weight, or just weight, of the i-th sample. If the samples is
clear from the context we sometimes write wi = w(Xi). This motivates us to regard

P̂N =
1

N

N∑
i=1

w(Xi)δXi , (3.7)

as a particle approximation of P, in the sense that for sufficiently well behaved test functions f , as
N →∞

P̂N [f ] =
1

N

N∑
i=1

f(Xi)w(Xi)→ P[f ].

We will return to the question of which functions f to consider further below and assume in the
following discussion fw ∈ L2(G).

To perform importance sampling one must be able to evaluate w. In the context of PGSSMs this is
usually not possible: if P is the intractable conditional distribution of X|Y , then the integration
constant of its density p(y) is not analytically available. Still, we can usually evaluate the weights
up to a constant, i.e.

w̃(x) ∝ dP

dG
(x)

is available. The missing constant is then Gw̃, which is itself amenable to importance sampling: we
may estimate it by

∑N
i=1 w̃(X

i). This leads to the so-called self-normalized importance sampling
weights

Wi =
w(Xi)∑N
i=1 w(X

i)
,

Monte Carlo estimates

ζ̂ =

N∑
i=1

Wif(X
i),

and particle approximation

P̂N =

N∑
i=1

WiδXi .

Unless w̃ is degenerate, i.e. constant,

ζ̂ =

∑N
i=1 w̃(X

if(Xi))∑N
i=1 w̃(X

i)

is a ratio of two non-constant, unbiased estimators and so is itself biased. Nevertheless, noticing
that the rescaled denominator 1

N

∑N
i=1 w̃(X

i) consistently estimates the integration constant Gw̃,
allows us to apply Slutsky’s lemma and obtain a central limit theorem for ζ̂ (recall that we assumed
fw ∈ L2(G)).

The class for test functions f for which this holds depends on P and G. (Agapiou et al., 2017)
study the behavior of uniformly bounded test functions ∥f∥ ≤ 1. For these functions it suffices that
w ∈ L2(G) to ensure asymptotic normality of ζ. Thus an important quantity is

ρ =
1

(Gw̃)2
G[w̃2] = G[w2] = P[w],
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the second moment of the importance sampling weights. (Agapiou et al., 2017) show that the bias∣∣∣E(P̂N −P)[f ]
∣∣∣

and mean-squared error (MSE)

E
(
(P̂N −P)[f ]

)2
of importance sampling are both, for bounded f , of order O

(
ρ
N

)
. Here the expectation E is with

respect to the random particles X1, . . . , XN . Consequently, for bounded functions, keeping ρ
N small

produces importance sampling estimates with small bias and MSE. This can be achieved in two
ways: either we choose G „close enough“ to P to ensure small ρ, or we choose N large enough to
compensate for a large ρ.

Applying Jensen’s inequality, we see that

DKL (P||G) = P[logw] ≤ logP[w] = log ρ,

so small ρ implies a small KL-divergence as well. Conversely, the following theorem of Chatterjee
and Diaconis implies that a small KL-divergence is both sufficient and necessary for importance
sampling to perform well.

Theorem 3.2 (Chatterjee and Diaconis, 2018, Theorem 1.1). Let P and G be probability measures
on a measurable space (X ,B) such that P≪ G and let f ∈ L2(P) be a function with ∥f∥L2(P) =(
Pf2

)1/2
<∞. Let Y be an X valued random variable with law P.

Let L = DKL (P||G) = E logw(Y ) be the KL-divergence between P and G, and let

P̂N =

N∑
i=1

w(Xi)δXi

be the particle approximations of P based on samples X1, . . . , XN i.i.d∼ G, N ∈ N.

If the sample size N is given by N = exp (L+ t) for a t ≥ 0,

E
∣∣∣P̂N [f ]−P[f ]

∣∣∣ ≤ ∥f∥L2(P)

(
exp(−t/4) + 2

√
P (logw(Z) > L+ t/2)

)
. (3.8)

Conversely, if N = exp (L− s) for s ≥ 0, then for any δ ∈ (0, 1)

P(P̂N [1] ≥ 1− δ) ≤ exp
(
−s
2

)
+

P
(
logw(Z) ≤ L− s

2

)
1− δ , (3.9)

where 1 is the constant function x 7→ 1.

Notice the boldface P and E to differentiate the measures P and G from expectations and probabilities
with respect to the abstract probability space (Ω,A,P) where the random variables X1, . . . , XN and
Y live.

The proof of this theorem is based on splitting X into {logw ≤ L+ t
2} and its complement and

straightforward, it may be found in the Appendix of (Chatterjee and Diaconis, 2018). Theorem 1.2
in the same paper provides a qualitatively similar result for autonormalised importance sampling.

Let us consider the implications of Theorem 3.2, starting with Equation (3.8), by devising heuristics
to decide when G is a good proposal for fixed sample size N , and assume for simplicity that
∥f∥L2(P) = 1. First of all, as t = logN −L, we have exp(−t/4) = exp(L/4)

N
1
4

, so for large N this term

becomes negligible, and the interesting term in inequality (3.8) is the second one. As E logw(Z) = L,
this term is a tail probability and we can use standard mass-concentration inequalities to analyze
its behavior as t (and so N) grows. Markov’s inequality tells us that

P
(
logw(Z) > L+

t

2

)
≤ L

L+ t/2
=

2

1 + logN
L

.
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Second, if, additionally, logw(Z) has finite variance, Chebyshev’s inequality yields

P
(
logw(Z) > L+

t

2

)
≤ 4Var(logw(Z))

t2
=

4Var(logw(Z))

(logN − L)2
.

In both upper bounds provided by the concentration inequalities, all else being equal, a smaller
KL-divergence will yield a tighter bound. However, in Chebyshev’s inequality, the variance of log
weights also plays a role, and will surely be different for different proposals. Assuming G≪ P, we
have dG

dP = 1
w and so

E exp(− logw(Z)) = E
1

w(Z)
= P

[
dG

dP

]
= 1,

If the log-weights are bounded from above and below, the following lemma shows that as the
variance of U = − logw(Z) goes to 0, their mean,

EU = E− logw(Z) = −DKL (P||G)

goes to 0 as well.

Lemma 3.5. For a, b ∈ R, let U ∈ [a, b] be a bounded random variable with variance σ2 and
E expU = 1. Let µ = EU be the mean of U . Then there exists a δ ∈ [a, b], such that

0 ≥ µ = log

(
1− δ σ

2

2

)
.

If, additionally, σ2 < 2
b then

µ ≥ log

(
1− bσ

2

2

)
.

Proof. As U is bounded, all involved expectations exist and are finite. That µ ≤ 0 follows from
Jensen’s inequality. We perform a first-order Taylor expansion of exp(U − µ), where the random
variable ξ is between U − µ and 0:

1 = exp(µ)E exp(U − µ) = exp(µ)

(
1 + E(U − µ) + E

(
(U − µ)2

2
exp(ξ)

))
.

Then ξ′ = ξ + µ ∈ [a, b], and note that, unless U = 1 a.s., E exp = 1 forces a < 0 < b. Thus

1 = exp(µ) + E
(
(U − µ)2

2
exp(ξ′)

)
,

and as ξ′ ∈ [a, b], the expectation is in
[
exp(a)σ

2

2 , exp(b)
σ2

2

]
, i.e. E

(
(U−µ)2

2 exp(ξ′)
)
= δ σ

2

2 for
some δ ∈ [a, b]. Solving for µ, we get

µ = log

(
1− δ σ

2

2

)
,

as promised.

The second statement follows from δ ≤ b and the monotonicity of log, where the condition ensures
that the argument is positive.

Corollary 3.1. Let P and G be equivalent probability measures with bounded Radon-Nikodym
derivative w = dP

dG ∈ [a, b], a, b ∈ R and KL-divergence DKL (P||G) = P[logw].

If logw ∈ L2(P) with variance σ2 = P[(logw − L)2], and σ2 < 2
b , then

DKL (P||G) ≤ − log

(
1− exp(b)

σ2

2

)
.
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Under the assumptions of this corollary, we see that a small variance of the log-weights implies a
small KL-divergence, which in turn implies good importance sampling performance.

Let us now discuss the implications of Equation (3.9). We see that for large s, i.e. N ≪ exp(L),
the right-hand side is small, and so the probability that importance sampling fails for the constant
function is practically relevant. Observe that here

P̂N [1] =
1

N

N∑
i=1

wi

is the mean of weights, which, for the standard weights w, does not have to sum to 1. As a result,
Chatterjee and Diaconis recommend to choose N = O(exp (DKL (P||G))).

Based on this discussion, we see that choosing G such that either the KL-divergence or the variance
of the log-weights is small is sensible. Making the variance small has the additional advantage that it,
at least for bounded log-weights, also implies an upper bound for the KL-divergence. We will return
to this train of thought when we discuss optimal ways of performing importance sampling, such as
the CE-method (minimizing the KL-divergence) and EIS (minimizing the variance of log-weights)
in the following sub-chapters.

In practice, we will want to judge whether for an actual sample X1, . . . XN i.i.d∼ G importance
sampling has converged, and there are several criteria available in the literature. The classic effective
sample size (ESS)(Kong, Liu, and Wong, 1994)

ESS =
1∑N

i=1W
2
i

∈ [1, N ]

arises from an analysis of the asymptotic efficiency of importance sampling estimates: Consider
additional Y 1, . . . , Y N

i.i.d∼ P, a test function f ∈ L2(P) and assume that ρ < ∞. We may then
estimate ζ = Pf in two ways: either by using the importance sampling estimate

ζ̂IS = P̂N (f) =

N∑
i=1

Wif(X
i) =

1

N

N∑
i=1

(NWi)f(X
i),

or by standard Monte-Carlo integration

ζ̂MC =
1

N

N∑
i=1

f(Y i).

(Kong, 1992) applies the delta method to Var
(
ζ̂IS

)
, obtaining

Var
(
ζ̂IS

)
≈ Var

(
ζ̂MC

)
(1 + Var (NW1)) .

Note that this approximation does not depend on the specific f considered, and it is not guaranteed
that for large N the remainder goes to 0, as (Kong, 1992) mentions. In particular, the approximation
has to fail whenever Var

(
ζ̂IS

)
< Var

(
ζ̂MC

)
, i.e. when importance sampling actually performs

variance reduction. Nevertheless, whenever the approximation is valid, we may interpret

check W / w / tilde w in the following

N

1 + Var (NW1)

as an effective sample size, in the sense that N times the relative efficiency of ζ̂MC relative to ζ̂IS is
approximately given by this expression. As the self-normalized

replace auto by self
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weights W 1, . . . ,WN are exchangeable and sum to 1, their expected value is EW1 = 1
N . Estimating

Var (W1) by the unadjusted sample covariance 1
N

∑N
i=1W

2
i − 1

N2 then results in the promised

ESS =
N

1 +N2
(

1
N

∑N
i=1W

2
i − 1

N2

) =
1∑N

i=1W
2
i

.

Notice that as the self-normalized weights sum to 1, the ESS is at least 1, as 0 ≤Wi ≤ 1 and at
most N by the Cauchy-Schwarz inequality.

If we write the ESS in terms of the unnormalized weights w̃ we see that the efficiency factor (EF)
EF = ESS

N fulfills

EF =
ESS
N

=

(
1
N

∑N
i=1 w̃i

)2
1
N

∑
i=1 w̃

2
i

a.s→ (G[w̃])2

G[w̃2]
= ρ−1,

if w̃ ∈ L2(G) (Agapiou et al., 2017, Section 2.3.2). Thus, asymptotically, a large ESS leads to small
bias and MSE for bounded functions f . Additionally, the above derivations allow us to interpret
the second moment

ρ = G[(NW1)
2] = (G[NW1])

2
+Var (NW1) = 1 + Var (NW1) ≈

Var
(
ζ̂IS

)
Var

(
ζ̂MC

)
as the asymptotic relative efficiency of the two estimators, as long as this approximation is valid. In
practice, a small ESS can be an indicator that importance sampling with G may be inadequate.
Note that relying solely on the empirical ESS may lead to problems, see the following example. To
prepare, we prove a lemma regarding ρ for Gaussian targets and proposals.

Lemma 3.6. Let P = N (µ,Σ) and G = N (ν,Ω) be two p-dimensional Gaussian distributions
with means µ, ν ∈ Rp and SPD covariance matrices Σ,Ω ∈ Rp×p. Then ρ is finite if, and only if,
Ω ≻ 1

2Σ.

Proof. For the weights w = p
g we have

ρ = G[w2] =

∫
p2(x)

g2(x)
g(x)dx =

∫
p2(x)

g(x)
dx

=

∫ √
detΩ√

(2π)p detΣ
exp

(
−(x− µ)TΣ−1(x− µ) + 1

2
(x− ν)TΩ−1(x− ν)

)
dx.

The exponent is a quadratic form in x, and so the integral is finite if, and only if, the matrix of
coefficients, −Σ−1 + 1

2Ω
−1 is negative definite. Rearranging terms, we see that this is equivalent to

Ω ≻ 1
2Σ.

Example 3.2 (failure of the ESS). Consider the Gaussian scale mixture

P =
1

2

(
N (0, 1) +N (0, ε−2)

)
and proposal G = N (0, 1). The weights are then given by

w(x) =
1

2

(
1 +

ε√
2π

exp

(
−x

2

2

(
ε2 − 1

)))
and their second moment w.r.t. G

ρ =

∫
w2(x)

1√
2π

exp

(
−x

2

2

)
dx

is finite if, and only if, ε2 > 1
2 , by the preceding lemma. Thus, for ε2 ≤ 1

2 interpreting the ESS or

EF is not sensible. Nevertheless, given samples X1, . . . , XN i.i.d∼ G, we may calculate the ESS in the
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Figure 3.1: Empirical EF for the setup of Example 3.2 for varying sample sizes N and ε2 and
M = 100 replications. Here G = N (0, 1) and P = 1

2

(
N (0, 1) +N (0, ε−2)

)
. In all scenarios the

second moment ρ is infinite, thus high EFs are misleading us to believe that importance sampling
performs well when it does not.

usual way. If N is only moderately large, there is a high probability that most samples do not lie in
a region where weights are small, i.e. in the tails of the second component. Thus, unless N is large,
the empirical ESS will be large, deceiving us to think that importance sampling with G is feasible.

We illustrate this by a simulation study, where we calculate the EF M = 100 times for different
values of N and ε. We used N = 100, 1000, 10000 and ε2 = 0.01, 0.1, 0.5; the results may be found in
Figure 3.1. Notice that for all values of ε considered, we have ρ =∞. We see that even for N = 1000
and ε = 1

2 the upper quartile of EFs is 71%, which seems reasonable to declare importance sampling
to perform well.

As an alternative, we may want to assess whether importance sampling has converged through the
empirical variance of ζ̂N ,2 i.e.,

V̂ar
(
ζ̂N

)
=

1

N

(
1

N

N∑
i=1

w2
i f(X

i)2 − ζ̂2N

)

is, while seemingly natural, flawed (Chatterjee and Diaconis, 2018). Indeed, the authors show that
for any given threshold ϵ we may find an N which only depends on ϵ, such that the probability that
the empirical variance exceeds ϵ for this N is small. This is summarized in the following theorem.

Theorem 3.3 (Chatterjee and Diaconis, 2018, Theorem 2.1). Given any ϵ > 0, there exists

lower bound on N?

N ≤ ϵ−221+ϵ
−3

such that the following is true. Take any G and P as in Theorem 3.2, and any
2As the following arguments depend on the sample size N , we mark this dependency by adding N to the subscript

of the estimator.
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f : X → R such that ∥f∥L2(P) ≤ 1. Then

P
(
V̂ar

(
ζ̂N

)
< ϵ
)
≥ 1− 4ϵ.

make eps / sigma consistent in all examples

The problem here is that N does not depend on G and P, so we may choose G almost singular to
P. As an example, take P = N (0, 1) and G = N (0, σ2) for σ2 > 1

2 . The weights are then given by

w(x) = σ exp

(
−x

2

2

(
1− 1

σ2

))
,

and for X ∼ G the variance of w(X)X is

τ2 = Var (w(X)X) =
σ4

(2σ2 − 1)
3
2

(3.10)

which goes to ∞ as σ2 does, see the appendix for the calculations. Thus for a pre-specified ϵ > 0,
let N be as in Theorem 3.3 and choose σ2 such that Var

(
ζ̂N

)
= τ2

N is larger than, say, 10ϵ. By the
preceding theorem, we would, with large probability, observe a small empirical variance and thus
declare ζ̂N to have converged, whereas, in reality, we would need a sample size that is 100 times as
large.

Thus using the empirical variance as a threshold for convergence should be avoided, at least for
importance sampling where the weights can be evaluated exactly. For self-normalized importance
sampling, the authors do not provide such a theorem. As a remedy (Chatterjee and Diaconis, 2018)
suggest the heuristic qN = EQN where

QN = max
1≤i≤N

Wi ∈ [0, 1].

This judges whether importance sampling has collapsed to just a few particles and is itself amenable
to Monte-Carlo integration, by repeatedly sampling N samples from G and calculating the weights.
As this requires multiple runs of importance sampling, it may, however, be prohibitively expensive
in practice.

In the following sections, we will predominantly take the position that we are interested in finding
a good particle approximation P̂N of the form Equation (3.7) over finding the optimal proposal G∗
Proposition 3.1 and assume that the importance sampling weights can only be evaluated up to a
constant. This has several reasons: First of all, for most problems considered in this thesis P is
usually a conditional distribution, e.g. P = PX|Y=y for states X and observations Y in the SSM
context. Should the appropriate densities exist, evaluating the weights amounts to calculating

dPX|Y=y

dG
(x) =

p(x|y)
g(x)

=
p(y|x)p(x)
g(x)p(y)

∝ p(y|x)p(x)
g(x)

.

In these situations p(y) =
∫
p(x, y) dx is usually intractable. For G∗ we are in the same situation,

where the evaluation of the integration constant P|f | is infeasible, but the density |f(x)|p(x)
is available. Second, focusing on the particle approximation allows us to consider multiple test
functions f , e.g. focus on different marginals of P, which is usually what practitioners are interested
in. Finally, this allows us to simplify the notation used in this thesis. P will always be the probability
measure of interest and G the proposal. In later parts of this thesis, we will predominantly perform
Gaussian importance sampling, i.e. G = N (µ,Σ), hence a handy mnemonic is to think of G as a
Gaussian proposal.

Let us now turn towards the problem of finding a good proposal G for a given P.
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3.4.1 Laplace approximation (LA)
The Laplace approximation (LA) goes back to Laplace (Laplace, 1986) who invented the technique
to approximate moments of otherwise intractable distributions. Since (Tierney and Kadane, 1986;
Tierney, Kass, and Kadane, 1989) rediscovered its use to approximate posterior means and variances,
it has been a staple method for approximate inference. The method is based on a second-order
Taylor series expansion of the log target density log p(x) around its mode x̂, i.e. matching mode
and curvature. Assuming the density is sufficiently smooth, we have

log p(x) ≈ log p(x̂) +∇x log p(x̂)︸ ︷︷ ︸
=0

(x− x̂) + 1

2
(x− x̂)TH(x− x̂) (3.11)

where H is the Hessian of log p evaluated at x̂. As log p(x̂) does not depend on x, the right-hand
side can be seen (up to additive constants) as the density of a Gaussian distribution with mean
x̂ and covariance matrix Σ = −H−1. Thus using G = N (x̂,−H−1) as a proposal in importance
sampling seems promising. If x̂ is the unique global mode of p and H is negative definite, the LA
yields an actual Gaussian distribution. To obtain the LA in practice, a Newton-Raphson scheme
may be used, which conveniently tracks H as well. Furthermore, if P includes more structure, e.g.
it is the smoothing density in the SSM context, we may be able to exploit this structure to design
efficient Newton-Raphson schemes, see Section 3.6.1.

The main advantage of the LA is that it is usually fast to obtain and, for sufficiently well-behaved
distributions on a moderate dimensional space, provides reasonably high ESS. Additionally, the
Newton-Raphson iterations to find the mode and Hessian are robust and require no simulation,
unlike the other methods discussed further below. For the SSMs we consider in this thesis, the
numerical methods can be implemented using the Kalman filter and smoother (Durbin and Koopman,
1997; Shephard and Pitt, 1997), even in the degenerate case where H is indefinite (Jungbacker and
Koopman, 2007), see also Section 3.6.1.

more theoretical background on LA?

However, as the LA is a local approximation, it may be an inappropriate description of the global
behavior of the target, see Example 3.3 for a breakdown of LA, and the simulation studies presented
in Section 3.8. Additionally, even if the LA works in principle, its ESS will usually degenerate
quickly once the dimension increases whereas the Cross-Entropy method (CE-method) and Efficient
Importance Sampling (EIS) do so at a slower pace.

3.4.2 The Cross-Entropy method (CE-method)
Recall from our discussion surrounding Theorem 3.2 that for importance sampling to be effective,
a small KL-divergence between the target P and the proposal G implies good performance for
importance sampling. As the KL-divergence depends on global properties of P, i.e. the Radon-
Nikodym derivative dP

dG , minimizing it leads to a global approximation of P, improving on the
local-approximation provided by the LA.

The Cross-Entropy method (CE-method) (Rubinstein, 1999; Rubinstein and Kroese, 2004) imple-
ments this idea and selects from a parametric family (Gψ)ψ∈Ψ of proposals the one that minimizes
the Kullback Leibler divergence (KL-divergence) to the target. Here Ψ is usually a subset of
Rk, which may be open, closed or neither. Thus, the CE-method aims at solving the following
optimization problem

min
ψ∈Ψ
DKL (P||Gψ) ,

for the optimal ψCE, should the minimum exist. The existence and uniqueness of ψCE will depend
heavily on the choice of parametric family (Gψ)ψ∈Ψ and P.

We will assume the existence of a common dominating measure µ for both P and all Gψ, ψ ∈ Ψ
with corresponding densities p and gψ, ψ ∈ Ψ. The importance sampling weights are then given by

wψ(x) =
p(x)

gψ(x)
,
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x ∈ X , or, if at least one of p and gψ is only available up to a constant, by

w̃ψ(x) ∝
p(x)

gψ(x)
.

If the dependence on ψ is not of interest or the particular ψ is obvious from the context, we may
drop the subscript.

The KL-divergence is given by
DKL (P||Gψ) = P [logwψ] ,

and can be infinite, e.g. if P does not possess second moments and Gψ are Gaussian distributions.
If the KL-divergence is infinite for all ψ ∈ Ψ, the CE-method becomes uninteresting. As such we
will require that the KL-divergence is finite for at least one ψ ∈ Ψ, and restrict Ψ, without loss of
generality, to those ψ where the KL-divergence is finite.

As the appropriate densities exist, we may reformulate the optimization problem to maximize the
cross-entropy between p and gψ instead:

argminψ∈ΨDKL (P||Gψ) = argminψ∈Ψ P [log p]−P [log gψ]

= argmaxψ∈Ψ P [log gψ]
. (3.12)

As the KL-divergence is non-negative by the information inequality, the cross-entropy P [log gψ]
is bounded from above by the differential entropy of P, P[log p]. For centered distributions with
covariance matrix Σ the differential entropy is bounded above by the maximum entropy distribution
in this setting, the Gaussian N (0,Σ) (Cover and Thomas, 2006, Example 12.2.8). Thus, if second
moments of P exist, the cross-entropy is bounded from above, and so a maximizer exists if the
supremum over Ψ is attained. This would be the case if Ψ is compact and ψ 7→ P[log gψ] is
continuous, however compact Ψ is too restrictive for our purposes. Instead, we are going to focus
on more realistic assumptions.

Suppose now that ψ 7→ log gψ(x) is (strictly) concave for P-almost every x ∈ X and Ψ is a convex
subset of Rk. Then ψ 7→ P [log gψ] is (strictly) concave as well. As a consequence, we may apply the
usual results from convex optimization, i.e. every local maximum is a global one and if ψ 7→ log gψ(x)
is strictly convex for P-almost every x, there is at most one maximizer (Bazaraa, Sherali, and
Shetty, 2006, Theorem 3.4.2).

As we have seen in Lemma 3.3, the densities of exponential families are log-concave in the natural
parameter, and as such they will be the primary candidates for our investigations of the CE-method.
If we use proposals from an exponential family, we may get rid of the base measure term h(x) in
the densities, as the following lemma shows.

Lemma 3.7. Let P be a probability measure on X = Rp and let (Gψ)ψ∈Ψ be a natural exponential
family on X such that P≪ Gψ for all ψ ∈ Ψ. Let µ be the dominating measure of the exponential
family, such that

dGψ

dµ
(x) =

h(x)

Z(ψ)
exp

(
ψTT (x)

)
,

with h ≥ 0 µ-a.s.

Then hµ is a dominating measure for both P and Gψ for every ψ in Ψ.

Proof. Let A ⊆ Rp be measurable. As h is a.s. non-negative, (hµ)(A) = 0 implies that h1A = 0

µ-a.s. Thus Gψ(A) =
∫
1A(x)

h(x)
Z(ψ) exp(ψ

TT (x)) dµ = 0 for all ψ as well. As Gψ ≫ P and ≫ is
transitive, hµ dominates P as well.

As a consequence, when performing importance sampling with target P and proposal Gψ from an
exponential family, we will assume in the following that h ≡ 1, achieved by taking hµ as the joint
dominating measure.
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An additional attractive property of the CE-method for exponential families with natural parameter
ψ ∈ Rk is that the optimal ψCE only depends on the expected value P[T ]. We first show, that if the
covariance of the sufficient statistic is positive definite, the expected value of T under Gψ uniquely
determines ψ ∈ Ψ, see also (Brown, 1986, Corollary 2.5) for a similar result in minimal exponential
families.

Lemma 3.8. Let (Gψ)ψ∈Ψ form a k-dimensional natural exponential family with log-densities

log gψ(x) = ψTT (x)− logZ(ψ),

and convex parameter space Ψ ⊆ Rk. Let ψ,ψ′ ∈ intΨ with Gψ[T ] = Gψ′ [T ]. If CovGψ
T is positive

definite, then ψ and ψ′ coincide.

Proof. Consider the function b : Ψ→ [−∞,∞)

ξ 7→ b(ξ) = Gψ′ [log gξ] = ξTGψ′ [T ]− logZ(ξ).

By Theorem 3.1, Gψ′ [T ] is finite and b possesses derivatives of every order. Then ψ is a critical
point of this map, as the gradient at ψ is

Gψ′ [T ]−∇ψ logZ(ψ) = Gψ′ [T ]−Gψ[T ] = 0.

The Hessian of this function at ξ is, see Theorem 3.1,

−Hξ logZ(ξ) = −CovGξ
[T ],

which is negative semi-definite, so b is concave. At ξ = ψ it is even negative definite, so the critical
point ψ is a strict local maximum. By concavity, it is the unique global maximum, and thus the
unique critical point, so ψ = ψ′.

Proposition 3.2 (The CE-method for exponential families). Let (Gψ)ψ∈Ψ form a k-dimensional
natural exponential family with log-densities

log gψ(x) = ψTT (x)− logZ(ψ),

and convex parameter space Ψ ⊆ Rk. Suppose T ∈ L1(P).

If there is a ψCE ∈ Ψ such that
P[T ] = GψCE [T ],

then ψCE is a maximizer of Equation (3.12). Furthermore, if CovGψCE
T is positive definite the

maximizer is unique.

Proof. The target may be rewritten as

ψ 7→ f(ψ) = P [log gψ(x)] = logZ(ψ) + ψTP[T ].

As logZ(ψ) is the cumulant-generating function of Gψ it is twice differentiable, and so is f . The
gradient of logZ(ψ) is

∇ψ logZ(ψ) = Gψ[T ]

and its Hessian is
Hψ logZ(ψ) = CovGψ

(T )

the covariance of T under Gψ. Thus the Hessian of f is

Hψf = −CovGψ
(T ),

which is negative-semi-definite. Therefore f is concave, and any local maximizer ψ is a global
maximizer. The gradient of f is

∇ψf(ψ) = P[T ]−Gψ[T ],

which is equal to 0 if, and only if, ψ solves

P[T ] = Gψ[T ].

Uniqueness follows from the preceding Lemma 3.8.
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As a consequence, the CE-method for natural exponential families reduces to matching the moments
of the sufficient statistic of the target and proposal. In many cases, this system of equations can
be solved analytically or by gradient descent algorithms. Let us discuss the assumptions and
applicability of this proposition. Assuming that T ∈ L1(P) is necessary for the target to be finite, it
cannot be dropped. As T typically consists of polynomial, rational or exponential functions, this is
not too restrictive, provided the target does not exhibit heavy tails. The proof of uniqueness relies
on CovGψ

T being positive definite, to ensure that ψ 7→ logZ(ψ) is strictly convex. This could
also be achieved by requiring the exponential family to be minimal, see (Brown, 1986, Theorem
1.13 (iv)). The existence of a ψ such that P[T ] = Gψ[T ] is not restrictive for most commonly used
distributions: for the (multivariate) normal, Poisson, negative binomial and binomial distribution
there is always a unique solution, as the sufficient statistics consist of means and covariances.

While P[T ] is usually not available, it is itself amenable to importance sampling. Given a proposal
G we may estimate P[T ] by P̂NT =

∑N
i=1W

iT (Xi) for X1, . . . , XN i.i.d∼ G and auto-normalized
importance sampling weights W i and in turn, applying Proposition 3.2, estimate ψCE by ψ̂CE
solving

P̂N [T ] = Gψ̂CE
[T ]. (3.13)

As T ∈ L1(P̂N ), the only conditions we have to check to apply the above proposition are that this
equation has a unique solution G-almost surely in the interior of Ψ and that Ψ is convex.

To apply the CE-method in practice, one usually iterates the sampling and estimation steps, using
the previously found ψ̂CE to sample in the current iteration and starting the iteration with a
proposal from the same exponential family G = Gψ0 . To ensure numerical convergence, a popular
device is that of common random numbers (CRNs), i.e. using the same random number seed in all
iterations. A basic version of the CE-method is presented in Algorithm 4.

Algorithm 4 The basic CE-method algorithm for exponential families

Require: exponential family (Gψ)ψ∈Ψ, initial ψ0, sample size N , unnormalized weights w̃
1: set l = 0
2: store random number seed
3: repeat
4: restore random number seed
5: sample X1, . . . , XN ∼ Gψl

6: calculate self-normalized weights W i for i = 1, . . . , N
7: estimate ψ̂CE ▷ Equation (3.13)
8: set ψl+1 = ψ̂CE
9: set l = l + 1

10: until ψ̂l converged
11: return ψ̂CE = ψ̂l

literature review CEM

The CE-method is routinely used for estimating failure probabilities for rare events (Homem-de-
Mello, 2007) and has been applied to Bayesian posterior inference (Ehre et al., 2023; Engel et al.,
2023), Bayesian marginal likelihood estimation (J. C. C. Chan and Eisenstat, 2012) and optimal
control problems (Kappen and Ruiz, 2016; Zhang et al., 2014).

more lit. review CEM

Importance sampling is well known to exhibit the curse of dimensionality (COD) Bengtsson, Bickel,
and B. Li, 2008, i.e. the phenomenon that in many problems, unless N grows exponentially with
the dimension of X , the weights collapse to a single particle, i.e. W (N) → 1 as the dimension of X
goes to ∞. As the CE-method employs importance sampling to obtain ψ̂CE, it too is affected by
this phenomenon, see also Section 3.8. The screening method Rubinstein and Glynn, 2009 deals
with the COD by keeping components of ψl that vary too much from iteration to iteration fixed, in
essence reducing the dimension of Ψ. Alternatively, the improved cross-entropy method (J. C. C.
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Chan and Kroese, 2012) suggests generating approximately independent samples from P by, e.g.,
MCMC-methods, and replacing the importance sampling version of P̂N in Equation (3.13) by the
actual empirical distribution. Still, in high dimensions both of these approaches may be difficult to
implement: the screening method may not move far from the initial proposal and MCMC-methods
are expensive in high dimensions.

As stated in (J. C. C. Chan and Kroese, 2012) there may be two reasons as to why the CE-method
fails: either the parametric family is not rich enough to give a good approximation to P, i.e.
DKL (P||GψCE) is still large, or the estimate ψ̂CE fails to be close to ψCE. As our simulation studies
Section 3.8 suggest, the reason for the degeneracy seems to be the latter. It will thus be beneficial
to investigate the asymptotic behavior of ψ̂CE.

In the remainder of this section, we will derive novel results on the performance of the estimator ψ̂CE
of ψCE. In particular, we will investigate under which conditions ψ̂CE is consistent and asymptotically
normal. To focus on the asymptotic behavior, we will only perform a single iteration of the basic
CE-method algorithm (Algorithm 4). While we restrict ourselves here to the setting of k-dimensional
natural exponential families, these results should generalize to other classes of distributions as well.
The advantage that this class of families has is that due to the structure of the densities, they
provide straightforward (regularity) conditions for the asymptotic results to hold. As the target
functions are concave, these conditions are rather liberal. We start with proving the consistency of
ψ̂CE.

Theorem 3.4 (consistency of ψ̂CE). Adopt the same assumptions as in Proposition 3.2. Furthermore,
let G≫ P be a proposal distribution and assume that

(i) ψCE is the unique maximizer of Equation (3.12),

(ii) ψCE is in the interior of the convex parameter space Ψ.

Then ψ̂CE is a strongly consistent estimator of ψCE.

The proof is based on the following theorem of Haberman.

Theorem 3.5 ((Haberman, 1989, Theorem 5.1)3). Let Ψ ⊆ Rk, X a separable, complete metric
space and bX : X ×Rk → [−∞,∞) such that for every x ∈ X the function

b(x, ·) : Rk → [−∞,∞), ψ 7→ b(x, ψ)

is concave. Let P be a probability measure on X such that P[b(·, ψ)] <∞ for all ψ ∈ Rk. Assume
that ψ∗ ∈ Ψ is the unique maximizer of

bΨ : Ψ→ [−∞,∞), ψ 7→ P[b(·, ψ)].

Let (Xi)i∈N
i.i.d∼ P be a sequence of i.i.d. random variables with distribution P and let for N ∈ N

let

P̂N =
1

N

N∑
i=1

δXi

be their empirical distribution. Let
(
ψ̂N

)
N∈N

be a sequence of M-estimators, i.e. a sequence of
maximizers of

b̂Ψ : Ψ→ [−∞,∞), ψ 7→ P̂N [b(·, ψ)].
Assume that the following conditions hold:

(C1) For some closed set V , ψ∗ is in the interior of V and Ψ ∩ V is closed.

(C2) ψ∗ is the unique maximizer of

bcl(Ψ) : cl(Ψ)→ [−∞,∞), ψ 7→ P[b(·, ψ)],

where cl denotes the closure of Ψ in Rk.
3Note that while the actual theorem assumes conditions 1,2,5 and 6 in the paper, C3 as stated here implies

conditions 5 and 6, see also the discussion in Sections 2.3 and 2.4 in (Haberman, 1989).
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(C3) Ψ is convex and bΨ is finite on a nonempty open set.

Then
ψ̂N

N→∞−→ ψ∗

P-almost surely, so ψ̂N is strongly consistent.

The assumptions of this theorem ensure that the unique optimum is in the interior of Ψ and
„well-separated“ from its boundary, so there are no additional maximizers on the boundary. In this
case, concavity of b(x, ψ) together with the law of large numbers yield uniform convergence of
P̂N [b(·, ψ)]→ P[b(·, ψ)] on compacta and thus also for ψ̂N , see (Haberman, 1989, pp. 1652).

To apply this theorem to our setting, let us begin by extending it to incorporate importance
sampling.

Proposition 3.3. Assume that the conditions of Theorem 3.5 are fulfilled and let G ≫ P be
another probability measure with Radon-Nikdoym derivative w(x) = dP

dG (x). Let (Xi)i∈N
i.i.d∼ P and

consider the particle approximations

P̃N =
1

N

N∑
i=1

w(Xi)δXi ,

P̂N =

N∑
i=1

W iδXi ,

and suppose for every N ∈ N there exist M-estimators

ψ̃N ∈ argmaxψ∈Ψ P̃N [b(·, ψ)] ,
ψ̂N ∈ argmaxψ∈Ψ P̂N [b(·, ψ)] .

Then both ψ̃N and ψ̂N are strongly consistent estimators of ψ∗.

Proof. Define a new objective function b̃ : X ×Rk → [−∞,∞) by

b̃(x, ψ) = w(x)b(x, ψ).

Then G
[
b̃(·, ψ)

]
= P [b(·, ψ)] for all ψ ∈ Ψ, and so ψ∗ is the unique global maximum of

ψ 7→ G
[
b̃(·, ψ)

]
.

As G[b̃(·, ψ)] = P[b(·, ψ)] <∞ and for fixed x ∈ X b̃(x, ·) = w(x)b(x, ·) is concave, we may directly
apply Theorem 3.5 to ψ̃N , showing its strong consistency.

For ψ̂N , notice that for a fixed sample X1, . . . , XN i.i.d∼ G and any function f : X → [−∞,∞) we
have, a.s.,

P̂N [f ] =

N∑
i=1

W if(Xi) =
G[w̃]∑N
i=1 w̃(X

i)

N∑
i=1

w̃(Xi)

G[w̃]
f(Xi) =

G[w̃]∑N
i=1 w̃(X

i)
P̃N [f ] ∝ P̃N [f ],

where w̃ are the unnormalized weights, i.e. w̃(x)
G[w̃] = w(x), x ∈ X . Thus ψ̂N maximizes P̃N [b(·, ψ)] as

well, and the result follows from the consistency of ψ̃N .

Let us now prove the promised consistency of the CE-method.
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Proof (Theorem 3.4). We show that the assumptions of Theorem 3.5 are fulfilled. Let

b : Rp ×Rk → [−∞,∞) b(x, ψ) =

{
log gψ(x) ψ ∈ Ψ,

−∞ else.

As Ψ is convex and gψ(x) is log-concave (see Lemma 3.3), b(x, ·) is concave. Let X1, . . . , XN i.i.d∼ P

and let P̃N = 1
N

∑N
i=1 δXi . For ψ ∈ Ψ we have

P[b(·, ψ)] = ψTP[T ]− logZ(ψ) <∞,

as T ∈ L1(P), while for ψ /∈ Ψ this integral is −∞. Thus we only have to check that (C1)-(C3) are
fulfilled.

For condition (C1) note that, as ψCE is in the interior of Ψ, we may choose ε > 0 such that the
closed ε ball around ψCE, B̄ε(ψCE) is completely contained in Ψ, so letting V = B̄ε(ψCE) implies the
condition. condition (C2) is fulfilled by the definition of b and condition (C3) is fulfilled by considering
the neighborhood of ψCE that is assumed to be contained in Ψ. Finally, by Proposition 3.3, ψ̂CE is
strongly consistent.

The assumptions on ψCE and Ψ in Theorem 3.4 could be somewhat looser, as the concavity of the
target function is a rather strong property. In natural exponential families,

Ψ =
{
ψ ∈ Rk : Z(ψ) <∞

}
is always convex so this is not a strong restriction. In regular exponential families, Ψ is open
and so only the existence and uniqueness of ψCE are required. Uniqueness may be attained, e.g.,
by Lemma 3.8. It will also hold if the exponential family considered is minimal (Brown, 1986,
Corollary 2.5). Existence is a matter of correctly specifying the exponential family. For example,
in Section 3.6.2 we will exploit the Markov structure of targets to restrict ourselves to Gaussian
Markov processes for (Gψ)ψ∈Ψ.

Not only is log gψ concave, but it also possesses derivatives of any order, at least on the interior of
Ψ. Indeed, its Hessian is given by the inverse of the Fisher-information matrix I(ψ)−1:

Hψ log gψ = −Hψ logZ(ψ) = −CovGψ
(T ) = −I(ψ)−1.

These rather strong properties enable us to derive a central limit theorem for the CE-method with
natural exponential family proposals under quite liberal conditions.

Theorem 3.6 (CLT for ψ̂CE). Adopt the same assumptions as in Proposition 3.2. Furthermore,
let G≫ P be a proposal distribution with weights w = dP

dG and assume that

(i) ψCE ∈ Ψ is the unique maximizer of Equation (3.12) which lies in the interior of the convex
parameter space Ψ,

(ii) the Fisher information matrix I(ψCE) exists and is positive definite,

(iii) w,wT ∈ L2(G), and

(iv) T ∈ L2(P).

Then √
N(ψ̂CE − ψCE)

D→ N (0, BMB)

where B = I(ψCE) = CovGψCE
(T )−1 and

M = CovG(wT ) = G
[
w2(T −P[T ])(T −P[T ])T

]
= P

[
w(T −P[T ])(T −P[T ])T

]
.

To prove Theorem 3.6, let us start again with a general version of a central limit theorem for
M-estimators based on concave objective functions.
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Theorem 3.7 ((Haberman, 1989, Theorem 6.1)4). Consider the same setting as in Theorem 3.5.

Assume further that ψ∗ lies in the interior of Ψ and that the following conditions hold:

(C7) The Hessian HψP [b(·, ψ∗)] exists and is non-singular.

(C10) For X ∼ P and some neighborhood V of ψ∗

σ2(ψ, ξ) = E (b′(X,ψ, ξ))
2
<∞ ψ ∈ V, ξ ∈ Rk,

where b′(x, ψ, ξ) = lima↓ a−1 (b(x, ψ + aξ)− b(x, ψ)) is the directional derivative. Note that
if b is differentiable for all ψ ∈ V , b′(x, ψ, ξ) = ξT∇ψb(x, ψ) and it suffices to assume
(∇ψb(x, ψ))i(∇ψb(x, ψ))j ∈ L1(P) for all ψ ∈ N and i, j = 1, . . . , k.

Let M = Cov (∇ψb(X,ψ)) and let B = − (HψP [b(·, ψ)])−1. Then

√
N
(
ψ̂N − ψ

) D→ N (0, BMB). (3.14)

Similar to the consistency result above (Proposition 3.3), we need to extend this CLT to account
for importance sampling.

Proposition 3.4. Assume that the conditions of Theorem 3.7 are fulfilled and use the same notation
as in Proposition 3.3. Furthermore, assume that

(i) w(·)b′(·, ψ, ξ) ∈ L2(G) in a neighborhood N of ψ∗ for all ξ ∈ Rk.

rewrite differentiable + second moment

Then √
N
(
ψ̃N − ψ∗

) D→ N (0, BMB), (3.15)

where M = Cov (w(X)∇ψb(X,ψ∗)) for X ∼ G and B = − (HψP [b(·, ψ∗)])−1 is as in Theorem 3.7.
Additionally √

N
(
ψ̂N − ψ∗

) D→ N (0, BMB). (3.16)

Proof. Similar to the proof of Proposition 3.3, define the new objective function b̃ : X ×Rk →
[−∞,∞) by

b̃(x, ψ) = w(x)b(x, ψ),

and notice that G
[
b̃(·, ψ)

]
= P [b(·, ψ)]. Let us verify the conditions of Theorem 3.7 for b̃ and the

probability measure G.

For condition (C7), as HψP[b(·, ψ)] exists and is non-singular, so does

HψG[b̃(·, ψ)] = HψP[b(·, ψ)]

exist and is non-singular. Similarly, it is easy to see that b̃′(x, ψ, ξ) = w(x)b′(x, ψ, ξ) and so for
X ∼ G

σ2
b̃
(ψ, ξ) = E

(
b̃′(X,ψ, ξ)

)2
= Ew2(X)b′(X,ψ, ξ)2 <∞

by assumption (i), showing condition (C10). Thus we may apply Theorem 3.7 to b̃ and G, finishing
the proof.

Interestingly, importance sampling only affects the M component of the asymptotic variance. The
reason for this is that M is a quadratic function of the weights w, while B only depends linearly on
w, allowing to switch integrators from G to P. We now have all the tools at our disposal to proof
Theorem 3.6.

4Note, again, that the original theorem is based on conditions 7,8,9 in the paper. However, under (C7), condition
(C10) implies conditions 8 and 9 in the paper. See the discussion in Section 3.1 in (Haberman, 1989).
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Proof of Theorem 3.6. We show that the assumptions and conditions of Theorem 3.7 for the
objective function b : X ×Rk → [−∞,∞)

b(x, ψ) =

{
log gψ(x) x ∈ Ψ

−∞ else,

are fulfilled, which, together with Proposition 3.4 will show the claim.

The Hessian of the objective function is, for ψ ∈ intΨ

HψP [b(·, ψ)] = HψP
[
ψTT − logZ(ψ)

]
= −Hψ logZ(ψ) = −I(ψ),

as the cumulant generating function is smooth on intΨ (Theorem 3.1). Thus the Hessian is
non-singular by assumption (ii), showing that condition (C7) is fulfilled.

For condition (C10), note that for ψ ∈ intΨ, b is differentiable with gradient

∇ψb(x, ψ) = T (x)−∇ψ logZ(ψ) = T (x)−Gψ[T ].

By assumption (iv), ∇ψb(x, ψ) ∈ L2(P), showing that condition (C10).

To show that the central limit theorem applies to ψ̂CE, we additionally show that assumption (i) in
Proposition 3.4 is fulfilled, which will finish the proof. To this end, note that

w(x)b′(x, ψ, ξ) = w(x)ξT∇ψb(x, ψ) = ξT (w(x)(T (x)−Gψ[T ])) ∈ L2(G)

by assumption (iii).

Finally, to show the representation of M , note that by Proposition 3.4 we have for X ∼ G

M = Cov (w(X) (T (X)−GψCE [T ])) ,

and Ew(X) (T (X)−GψCE [T ]) = 0 as GψCE [T ] = P[T ].

The form of the asymptotic covariance matrix is that of the sandwich estimator (White, 1982),
corrected for the importance sampling with G. This is not surprising: the CE-method essentially
performs maximum likelihood estimation of ψ where the data comes from the misspecified P.
Additionally, we have to correct the variance for performing importance sampling with G, instead
of sampling directly from P.

The assumptions of Theorem 3.6 are minimal to facilitate the proof. The existence and positive
definiteness of the Fisher information matrix are easily checked for the exponential family proposal
and hold for minimal regular exponential families. Additionally, we have two moment constraints
that involve the weights w and the sufficient statistic T . That wT ∈ L2(G) may be seen as a
generalization of the existence of the second moment ρ = G[w2], adapted to the exponential family
setting. As such it is a natural requirement. That T ∈ L2(P) is required for the application of
Theorem 3.7, and, as mentioned before, should not be problematic in practice, except for heavy-tailed
distributions.

For our application, we will choose (Gψ)ψ∈Ψ to consist of Gaussian distributions with natural
parameter ψ =

(
Σ−1µ,− 1

2Σ
−1) and sufficient statistic T (x) =

(
x, xxT

)
. Thus T ∈ L2(P) is

equivalent to P having fourth order moments, which is reasonable if the target is not heavy-tailed.

If (Gψ)ψ∈Ψ do not form an exponential family, ψ̂CE will still be consistent and asymptotically
normal, provided the usual regularity conditions for M-estimators apply. These usually include
conditions to ensure the maximum is well-separated and the target is sufficiently smooth such that
a Taylor expansion around the maximum is feasible. To extend our results to more involved settings,
we refer the reader to (Van der Vaart, 2000) for an empirical process treatment of M- and related
Z-estimators, (Haberman, 1989) for asymptotics when the objective function is concave, but the
maximum may lie on the border of the parameter space and (Liang and Zeger, 1995) for a review
of estimators based on estimating equations.

However, these conditions will become more intricate than the ones we have provided here, as the
concavity of the log densities is a rather strong property. As a result, we expect that assessing
whether these conditions are satisfied in practice be more difficult.
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3.4.3 Efficient Importance Sampling (EIS)
Efficient Importance Sampling (EIS) (Richard and Zhang, 2007) provides an alternative to the CE-
method. Instead of minimizing the KL-divergence between the target P and proposal Gψ, ψ ∈ Ψ, EIS
aims at minimizing the variance of the logarithm of importance sampling weights. Our discussion of
(Chatterjee and Diaconis, 2018), Theorem 3.2, especially Lemma 3.5, suggests that this is worthwhile.
Thus, EIS finds ψEIS which is a feasible solution to the following optimization problem

min
ψ∈Ψ

VarP [logwψ] = min
ψ∈Ψ

P [logwψ −P logwψ]
2
, (3.17)

where, as in the last section, logwψ = log p− log gψ.

Two problems arise: P[logwψ] = DKL (P||Gψ) is usually intractable and we usually only have
access to the unnormalized weights w̃ψ

Gψ[wψ]
= wψ, with unknown integration constant Gψ [wψ].

Both can be dealt with by introducing the nuisance parameter λ = P [log w̃ψ], utilizing the fact
that the mean is the minimizer of the squared distance functional with the minimum value equal to
the variance, should it exist. Indeed

logwψ −P[logwψ] = log w̃ψ − logGψ[w̃ψ]−P [log w̃ψ] + logGψ[w̃ψ] = log w̃ψ −P [log w̃ψ] ,

so
min
ψ∈Ψ

P [logwψ −P [logwψ]]
2
= min
ψ∈Ψ,λ∈R

P [log w̃ψ − λ]2 ,

where ψ ∈ Ψ is a minimizer of the left-hand side if, and only if, (ψ, λ) ∈ Ψ×R with λ = P [log w̃ψ]
is a minimizer of the right-hand side.

Similar to the CE-method we restrict our in-depth analysis to natural exponential family proposals
where

log gψ(x) = ψTT (x)− logZ(ψ).

In this case the optimization problem is reduced to

min
ψ∈Ψ,λ∈R

P
[
log p− ψTT − λ

]2
, (3.18)

a weighted linear least squares problem. As we consider unnormalized weights w̃, we are additionally
able to get rid of the potentially non-linear term logZ(ψ). Notice too that this is a convex objective
function in ψ which, similar to the CE-method, will be very useful to derive asymptotics later on.
For now, we begin with studying the existence and uniqueness of ψEIS similar to Proposition 3.2.

Lemma 3.9 (EIS for exponential families). Let (Gψ)ψ∈Ψ form a k-dimensional natural exponential
family with log-densities

log gψ(x) = ψTT (x)− logZ(ψ)

for Ψ ⊆ Rk. Suppose that log p, T ∈ L2(P).

If there is a ψEIS ∈ Ψ with

CovP (T )ψEIS = CovP (T, log p) (3.19)

it is a global minimizer of Equation (3.17). If CovP (T ) is non-singular,

ψEIS = CovP(T )
−1 CovP(T, log p)

is the unique global minimizer.

Proof. Under the proposed conditions, we may consider Equation (3.18) instead, where the moment
conditions on log p and T ensure that the problem is well-posed, i.e. the target is finite for all ψ ∈ Ψ.
Thus the optimal (ψEIS, λEIS) are given by the best linear unbiased predictor (BLUP) of log p by
the sufficient statistic T under P for ψEIS and P [log w̃ψEIS ] for λEIS. The BLUP is given by any
solution of

CovP(T )ψEIS = CovP(T, log p),
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cite something

i.e. ψEIS as stated in the lemma. Furthermore, if CovP(T ) is non-singular, the solution to this
equation is unique.

As the optimal ψEIS depends on several unknown quantities, EIS proceeds like the CE-method and
employs importance sampling with a proposal G, estimating ψEIS by(

λ̂, ψ̂EIS

)
= argminλ,ψ P̂N [log w̃ψ − λ]

where X1, . . . , XN i.i.d∼ G. Again, if Gψ, ψ ∈ Ψ form an exponential family with natural parameter
ψ, this optimization problem turns into a weighted least squares problem, so we can estimate ψEIS
with the standard weighted least squares estimator(

λ̂′, ψ̂EIS

)
=
(
XTWX

)−1
XTWy

where the random design matrix X5 and diagonal weights matrix W are given by

X =

 1 T (X1)T

. . . . . .
1 T (XN )T


and

W = diag
(
W 1, . . . ,WN

)
,

and the observations are

y =
(
log p(X1), . . . , log p(XN )

)T ∈ RN .

Alternatively, replacing P by P̂N in Equation (3.19), we obtain the equivalent formulation

ψ̂EIS = CovP̂N (T )
−1 CovP̂N (T, log p) , (3.20)

as long as CovP̂N T is non-singular.

An attractive feature of EIS is that if the target P is a member of the exponential family of
proposals, i.e. there is a ψP ∈ Ψ such that P = GψP

, then EIS finds the optimal ψEIS = ψP a.s. for
a finite number of samples.

Proposition 3.5 (Finite sample convergence of EIS). Suppose Gψ, ψ ∈ Ψ ⊆ Rk for a natural
exponential family w.r.t. Lebesgue measure, where the support of the sufficient statistic suppT is
open in Rk. Furthermore let G be a probability measure on Rm that is equivalent to P, i.e. G≪ P
and P≪ G.

If there is a ψP ∈ Ψ such that P = GψP
, then ψ̂EIS = ψP a.s. for N ≥ k.

Proof. As P stems from the same exponential family as Gψ, the pseudo-observations are

log p = ψTPT − logZ(ψP).

Thus CovP̂N (T, log p) = CovP̂N (T )ψP. If we can show that CovP̂N T is non-singular, Equa-
tion (3.20) implies that ψ̂EIS = ψP a.s..

5if XWX is not invertible, replace the inverse by the Moore-Penrose pseudoinverse
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If CovP̂N T were singular, there would exist a ψ ∈ Rk such that

ψT CovP̂N (T )ψ = CovP̂N
(
ψTT

)
= 0.

In this case the a.s. non-zero W i(Xi)T (Xi) would lie in the orthogonal complement ψ⊥ for all
i = 1, . . . , N . As the weights are a.s. positive by the assumed equivalence of G and P, the same
holds true for T (Xi), i = 1, . . . , N . If N is bigger than k, the probability that this happens is 0, as
suppT is open. Thus CovP̂N T is non-singular almost surely and the result is shown.

Note that if in the above proposition only Gψ ≫ P holds, we obtain, by a similar argument, that

P
(
ψ̂EIS = ψP

)
N→∞−→ 1.

Additionally, we then have to take care of the event {w(X) = 0}, whose probability is now potentially
positive.

We now turn to deriving asymptotics for ψ̂EIS. As for the CE-method, we start with proving that
ψ̂EIS consistently estimates ψEIS. For this we need to ensure that ψEIS is the unique solution to
Equation (3.17), as otherwise, consistent estimators of ψEIS cannot exist. As Equation (3.18) is a
linear least squares problem, the objective function is convex, and so we can apply Theorem 3.5
and Proposition 3.3.

Theorem 3.8 (consistency of ψ̂EIS). Let (Gψ)ψ∈Ψ form a k-dimensional natural exponential family
with log-densities

log gψ(x) = ψTT (x)− logZ(ψ)

for convex Ψ ⊆ Rk. Let G≫ P be a proposal and suppose that

(i) log p, T ∈ L2(P) and

(ii) CovP(T ) is non-singular,

(iii) ψEIS ∈ intΨ.

Then
ψ̂EIS

N→∞−→ ψEIS

almost surely.

Proof. We follow the same strategy as in the proof of Theorem 3.4. Let

b : Rp ×Rk+1 → [−∞,∞) b(x, ψ′) =

{
− 1

2

(
log p(x)− ψTT (x)− λ

)2
ψ ∈ Ψ

−∞ else,

where ψ′ = (ψ, λ) ∈ Rk+1. For fixed x this function is concave, as its Hessian is negative semi-
definite:

Hψ′b(x, ψ′) = −
(

1 T (x)T

T (x) T (x)T (x)T

)
= −

(
1 T (x)T

) (
1 T (x)T

)T
,

if ψ ∈ Ψ. Let X1, . . . , XN i.i.d∼ P and let P̃N be their empirical distribution. For ψ ∈ Ψ, λ ∈ R we
have

P [b(·, ψ′)] = −1

2
P
[(
log p− ψTT − λ

)2]
<∞,

as log p, T ∈ L2(P). Let us now check that conditions (C1) - (C3) are fulfilled.

(C1) is fulfilled, as we assumed ψEIS ∈ intΨ. (C2) holds, as ψEIS is the unique global maximizer by
Lemma 3.9, as Cov(T ) is non-singular. (C3) obviously holds.

Thus ψ̂EIS is strongly consistent if G = P. If G is different from P, we can apply Proposition 3.3,
where the existence of M-estimators is ensured by Equation (3.20), using the Moore-Penrose inverse
if CovP̂N (T ) is singular.
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discussion of assumptions

As Equation (3.20) expresses ψ̂EIS in terms of empirical covariances, we could alternatively prove
consistency by ensuring that the empirical covariances are consistent as well, for which we would
need to ensure that fourth-order moments of log p and T w.r.t. P exist. This strategy may be fruitful
if ψEIS does not lie in the interior of Ψ, although the more sophisticated treatment of (Haberman,
1989) may also be applicable under these circumstances.

Additionally, if fourth-order moments exist, we can derive a central limit theorem, similar to
Theorem 3.6, for EIS.

Theorem 3.9 (CLT for ψ̂EIS). Let (Gψ)ψ∈Ψ form a k-dimensional natural exponential family with
log-densities

log gψ(x) = ψTT (x)− logZ(ψ),

and convex parameter space Ψ ⊆ Rk. Let G≫ P be a proposal with weights w = dP
dG .

(i) wTiTj , w(log p)
2 ∈ L2(G) for i = 1, . . . , k, j = 1, . . . , k,

(ii) log p, Ti ∈ L4(P) for all i = 1, . . . , k

(iii) CovP(T ) is non-singular and ψEIS ∈ intΨ.

Then √
N(ψ̂EIS − ψEIS)

D→ N (0, BMB)

where B = CovP(T )
−1 and

M = CovG

(
w
(
log p− ψEIS

TT − λEIS −P[T ]
)
T
)
.

Proof. Similar to the proof of Theorem 3.6, we combine Theorem 3.7 and Proposition 3.4. Let

b : X ×Rk+1 → [−∞,∞) b(x, ψ′)

{
− 1

2

(
log p(x)− ψ′TT ′(x)

)
x ∈ Ψ

−∞ else,

where ψ′ = (ψ, λ) ∈ Ψ×R and T ′(x) =
(
T (x) 1

)
. For ψ ∈ Ψ the map (ψ, λ)→ P[b(·, (ψ, λ))] is

differentiable with gradient

∇ψ′P[b(·, ψ′)] = −P
[(
log p− ψ′TT ′

)
T ′
]
=

(
−P

[
T ′ log p− T ′T ′Tψ′

]
−P

[
log p− ψ′TT ′

] )
and Hessian

Hψ′P[b(·, ψ′)] = −P
[
T ′T ′T

]
= −

(
P
[
TTT

]
P[TT ]

P[T ] 1

)
.

The Hessian is negative definite, as for all ψ ∈ Rk, λ ∈ R we have(
ψT λ

)
Hψ′P [b(·, ψ′)]

(
ψT λ

)T
= −

(
ψT CovP(T )ψ + ψTP[T ]P[T ]Tψ + 2ψTP[T ]λ+ λ2

)
= −

(
ψT CovP(T )ψ + (λ+ ψTP[T ])2

)
≤ 0,

with equality if, and only if, both λ and ψ are 0, as CovP(T ) is assumed to be positive definite.
Thus condition (C7) is fulfilled.

For condition (C10), we can verify that for all i, j = 1, . . . , k + 1

(∇ψ′b(·, ψ′))i(∇ψ′b(·, ψ′))j =
(
log p− ψ′TT ′

)2
T ′iT

′
j

is in L1(P) by assumption (ii) and the Hölder inequality.

To apply Proposition 3.4 we need to show that w(·)b′(·, ψ′, ξ′) ∈ L2(G) for all ξ′ ∈ Rk+1 and all ψ′
in a neighborhood of ψEIS, for this it suffices that we show

w2(∇ψ′b(·, ψ′))i(∇ψ′b(·, ψ′))j = w2
(
log p− ψ′TT ′

)2
T ′iT

′
j
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is in L1(G), which holds, again, by assumption Item (i) and the Hölder inequality.

We have thus shown a central limit theorem for ψ̂′EIS =
(
ψ̂EIS, λ̂EIS

)
, i.e.

√
N
(
ψ̂′EIS − ψEIS

)
→ N (0,M ′B′M ′)

with B′ = −
(
Hψ′

EIS
P [b(·, ψ′EIS)]

)−1 and M ′ = Cov
(
w(X)∇ψ′

EIS
b(X,ψ′EIS)

)
for X ∼ G. By using

the inversion formula for block matrices, we obtain

B′ =

(
P
[
TTT

]
P[TT ]

P[T ] 1

)−1
=

(
Σ+ µµT µT

µ 1

)−1
=

(
(Σ + µµT − µµT )−1 0

0 1− µT (Σ + µµT )−1µ

)(
Ik −µT

−µ(Σ + µµT )−1 1

)
=

(
Σ−1 −µTΣ−1
−Σ−1µ 1− µT

(
Σ+ µµT

)−1
µ

)
where Σ = CovP(T ) and µ = P[T ]. Similarly,

M ′ =

(
CovG (wWψEIST ) CovG (wWψEIST,wWψEIS)

CovG (wWψEIS , wWψEIST ) CovG (wWψEIS)

)
,

where WψEIS = log p− ψ′TEIST
′.

If µ ̸= 0, we may change the sufficient statistic of the exponential family such that this holds, i.e.
let T̃ = T −P[T ], then

log gψ(x) = ψTT (x)− logZ(ψ) = ψT T̃ (x)− log Z̃(ψ)

where Z̃(ψ) = logZ(ψ) +P[T ]. As ψEIS, Equation (3.19), only depends on T −P[T ] under P, this
does not change ψEIS. Similarly, ψ̂EIS, Equation (3.20), is unaffected by subtracting a constant from
T . Only

λ̃EIS = λEIS +P[T ]

and similarly λ̂EIS are changed.

Thus, without loss of generality, we may assume that P[T ] = 0. Then

B′ =

(
Σ−1 0
0 1

)
is a diagonal matrix. Taking the ψEIS marginal of the asymptotic normal distribution, we arrive at

√
N
(
ψ̂EIS − ψEIS

)
→ N (0, BMB)

with B = CovP(T ) and M = CovG

(
w
(
log p− ψEIS

TT − λEIS −P[T ]
)
T
)
, as promised.

3.5 Interim discussion
Before we apply EIS and the CE-method in the SSM context, let us consolidate what we have
achieved by the asymptotic analysis in the preceding two subsections and reason which of the two
methods should be used in which circumstances.

We start with a discussion of the optimal values ψCE and ψEIS. Notice that ψEIS depends on
second-order moments of the sufficient statistic T , as well as the shape of log p, whereas the optimal
parameter for the CE-method ψCE depends only on the first-order moments of T . This dependence
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on higher-order moments may be beneficial for the EIS method, for example, if the covariance of T
under P is very different from that under Gψ.

should have an example for this later

The two methods differ concerning the assumptions that are required for uniqueness, consistency and
the central limit theorem to hold if the proposals come from an exponential family. For uniqueness,
Proposition 3.2 and lemma 3.9, both methods require that the covariance of T is non-singular,
however, the measures under which the covariance are considered differ: for the CE-method we
need CovGψCE

(T ) to be non-singular, while for EIS the same has to hold for CovP(T ). While the
former is easy to ensure, the latter depends on the intractable target P and may be more difficult
to verify in practice, depending on T .

Regarding the consistency results, Theorems 3.4 and 3.8 as well as the central limit theorems,
Theorems 3.6 and 3.9, EIS requires that the sufficient statistic be twice as often P-integrable as
the CE-method. Additionally, the EIS results assume that log p is sufficiently often P-integrable.
Therefore, EIS is, at first glance, more restrictive than the CE-method. However, our application

will perform importance sampling with Gaussian proposals where T (x) =
(

x
xxT

)
. For importance

sampling to be consistent in this setting, we assume that the target has thinner tails than the
Gaussian proposal, which implies that all polynomial moments of the target, and thus of T exist.
A similar argument can be made for log p, and so the assumptions are likely to be fulfilled when
Gaussian importance sampling is consistent.

To compare the asymptotic covariance matrices of both methods, note that both covariance
matrices have the same „bread-meat-bread“ factorization, as they are asymptotic covariance ma-
trices of M-estimators. We see that both BCE = I(ψ) = CovGψCE

(T )−1 and BEIS = CovP(T )
−1

are precision matrices of the sufficient statistic T , one with respect to the optimal CE-method
proposal and one with respect to the target. Thus, if P is well approximated by GψCE , we
would expect these two components to be close to one another. For MCE = CovG (wT ) and
MEIS = CovG

(
w(log p− ψTEIST − λEIS −P[T ])T

)
, there is a more notable difference, i.e. the pres-

ence of the log p− ψTEIST − λEIS term. If the EIS approximation performs well, we can expect this
term to be small, as it is the prediction error of the least squares approximation of log gψ to log p.
Therefore, we expect that EIS outperforms the CE-method in terms of asymptotic variance in these
settings. In agreement with Proposition 3.5, MEIS = 0 if log p = log gψP

so that ψEIS = ψP.

Additionally, both MCE and MEIS depend on the proposal G, and indicate how one might tailor
the initial proposal G to produce low-variance estimates. For the CE-method we might choose
G such that the trace determinant of G[w2TTT ] becomes small. This is not necessarily achieved
by the CE-method proposal Gψ̂CE

, and so it may be worthwhile to investigate using two types of
proposals in the CE-method, one that makes Mce small and GψCE . This is especially relevant as
our simulation studies, Section 3.8, suggest that the asymptotic covariance of the CE-method is
usually inferior to that of EIS. For EIS, a similar approach might be fruitful, but is not as urgent as
that for the CE-method, as the asymptotic covariance of EIS is usually small enough to be feasible
in practice.

Finally, let us stress that these asymptotic considerations are, to the author’s knowledge, novel
results and should be straightforward to extend if the proposals (Gψ)ψ∈Ψ do not form a natural
exponential family. As any minimal exponential family may be reduced to a natural exponential
family by reparametrization, see (Brown, 1986, Theorem 1.9), the delta method can be used to
derive CLTs in this case as well, as Proposition 3.2 and lemma 3.9 still apply. If the family is not
minimal the optimal values ψEIS and ψCE may be non-unique, so we cannot hope to estimate them
consistently. In this case the user should choose a minimal parametrization, see again (Brown, 1986,
Theorem 1.9). For non-exponential family proposals our results should also carry over, provided
the usual regularity conditions ensuring uniqueness, consistency and asymptotic normality for
M-estimators hold. If the objective functions are not concave as they are in our setting one usually
requires uniformly bounded third-order derivatives of the objective function to exist.

Furthermore, our results can also be extended to the so-called Variance-Minimization method
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(VM-method) which determines an optimal proposal by solving the following optimization problem:

min
ψ∈Ψ

VarGψ
(wψ) = min

ψ∈Ψ
Gψ

[
w2
ψ

]
= min
ψ∈Ψ

P [wψ] ,

where the first equality holds as Gψ[wψ] = 1 for all ψ. Thus the VM-method chooses ψ such that
the second moment of importance sampling weights, ρ, becomes small. Again, this is sensible by the
discussion surrounding ρ and the ESS. Again, one uses importance sampling with a proposal G to
approximate P[wψ] by P̂N [wψ], and solves this noisy version of the problem. Unfortunately, there
is no closed form for the optimal ψVM or ψ̂VM, even if the proposals form a natural exponential
family. Still, as x 7→ wψ(x) is convex, so is x 7→ P[wψ], and we can apply Theorems 3.5 and 3.7
in combination with Propositions 3.3 and 3.4 to show, under suitable regularity conditions, the
consistency and asymptotic normality of the method.

Now that we have gained theoretical insight into optimal importance sampling, let us apply these
insights to the SSMs that we are interested in.

3.6 Gaussian importance sampling for state space models
For the types of models considered in this thesis, importance sampling is used to infer the posterior
distribution. Given a state space model of the form (3.1) and observations Y = Y:n, let P be the
distribution of the states X = X:n, conditional on Y and f be a function of interest. The task at
hand is now to find a suitable proposal G, using the methods presented in the last section. If n is
large, the posterior distribution lives in a high dimensional state of dimension m · n, so to obtain G
efficiently, we should exploit the available structure. Additionally, we want G to be tractable, so
simulating from it is possible and evaluating the weights w up to a constant is possible.

The multivariate Gaussian distribution is a good candidate in this setting, as simulating from it
is straightforward and its density can be evaluated analytically. However, naively performing the
optimal importance sampling methods from the previous section for all multivariate Gaussians is
computationally inefficient as the family of distributions has O((n ·m)2) many parameters. We
can, however, exploit the available structure of the SSM to find parameterizations with fewer
parameters by either using smoothing distributions of GLSSMs (Section 3.6.1) or approximating
with a Gaussian discrete-time Markov process (Section 3.6.2).

Using Gaussian proposals, while computationally efficient, also comes with some drawbacks. The
whole procedure hinges on the assumption that there is a Gaussian that is close to the target
distribution. In the setting of SSMs this is not guaranteed, as the targets may contain multiple
modes or heavy tails, features that may, in the worst case, lead to inconsistent importance sampling
estimates. Additionally, even if there is a Gaussian distribution that facilitates consistent importance
sampling, finding it in practice may be complicated, as the proposals generated by the LA, CE-
method and EIS have deteriorating performance for fixed sample size N (in terms of ESS and
convergence) with increasing dimension, see Section 3.8.5.

small lit. review

3.6.1 The GLSSM-approach
The first approach is motivated by the fact that the target posterior is again a Markov process, as
are posteriors in GLSSMs. Additionally, the posterior distribution in GLSSMs is again Gaussian,
and straightforward to simulate from by, e.g., the FFBS algorithm (Algorithm 3) or the simulation
smoother (Durbin and Koopman, 2002). Thus parameterizing the proposals G by the posterior of
a suitably chosen GLSSM may be a fruitful approach. For the models we consider in this thesis,
the distribution of states is already Gaussian and the observations are conditionally independent
given the states. Thus a natural GLSSM to use as a proposal consists of keeping the prior
distribution of states and replacing the distribution of observations with conditionally independent
Gaussian distributions and the actual observations by synthetic ones. By the assumed conditional
independence, this model only needs 2p · (n + 1) many parameters, p · (n + 1) for the synthetic
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observations and p · (n+ 1) for their variances. We term this approach the GLSSM-approach to
importance sampling.

In total, the GLSSM-approach considers parametric proposals Gψ of the form

Gψ = L(X|Z = z),

Zt = BtXt + ηt,

ηt ∼ N (0,Ωt) ,

Ωt = diag
(
ω2
t

)
= diag

(
ω2
t,1, . . . , ω

2
1,p

)
.

(3.21)

where the distribution of X is given by (3.4), ψ =
(
z, ω2

)
for z = (z0, . . . , zn) ∈ Rn×m and

ω2 =
(
ω2
0 , . . . , ω

2
n

)
∈ Rn×m. Alternatively the natural parametrization ψ =

(
z ⊘ ω2,−1⊘

(
2ω2

))
may also be used, where ⊘ is the Hadamard, i.e. entry-wise, division. Simulation from Gψ may be
efficiently implemented by the FFBS algorithm, as Gψ is the smoothing distribution of a GLSSM.

In this setting, the importance sampling weights are given by

w(x) =
p(x|y)
g(x|z) =

p(y|x)p(x)
g(z|x)p(x)

g(z)

p(y)
∝

n∏
t=0

p(yt|xt)
g(zt|xt)

,

so they can be computed efficiently. Additionally, for a LCSSM with linear signals, p(yt|xt) and
g(zt|xt) depend on xt only through the signal st = Btxt, and we have

w(x) ∝
n∏
t=0

p(yt|st)
g(zt|st)

, (3.22)

which implies that auto-normalized weights may be calculated by using the signal smoother
(Jungbacker and Koopman, 2007, Theorem 2). As (Durbin and Koopman, 2012) (Durbin and
Koopman, 2012, Section 4.5.3) argue, it is often computationally more efficient to treat only on the
signals S:n instead of the states X:n, the idea being that the dimension of St, p, is usually much
smaller than that of Xt, m.

As the joint distribution of (X,S) is a Gaussian distribution, by Lemma 3.1 X|S = s is again
Gaussian, with known conditional mean and covariance matrix and density p(x|s) = g(x|s).
If (X̃t)t=0,...,n is a draw from this conditional distribution a quick calculation reveals that a.s.
BtX̃t = St, and so, as expected, the weights w(X̃t) are a.s. constant and given by (up to the
integration constant) Equation (3.22). Producing a draw from this conditional distribution can
be achieved by the FFBS algorithm (Algorithm 3), as (X,S) form a GLSSM with degenerate
observation covariance matrices Ωt = 0.

By the assumed conditional independence of observations given signals, we have

p(x, s|y) ∝ p(x|s)p(s|y),

and so if one is interested in the states, rather than the signals, importance sampling with the
proposal Equation (3.21) can be achieved in a two-step procedure: first sample from g(s|z), then
run the FFBS algorithm to sample from g(x|s) = p(x|s) using the same weights for MC-integration.

The GLSSM-approach is the standard approach for finding the LA in LCSSM (Durbin and Koopman,
2012; Durbin and Koopman, 1997) and may even be applied when the observation densities are not
log-concave(Jungbacker and Koopman, 2007)

more explicit

. The approach also leads to efficient implementation for EIS (Koopman, Lit, and Nguyen, 2019).
However, as will become apparent in the later part of this section, it is infeasible for the CE-method
if n is large.

We now give a concise overview over how to perform the LA and EIS for LCSSM, but refer the
reader for more details to the respective literature. The LA
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Algorithm 5 The LA for LCSSM

Algorithm 6 EIS for LCSSM

elaborate on LA / EIS, Durbin Koopman book, EIS, MEIS, NEIS papers

For the CE-method, using the GLSSM-approach turns out to be difficult numerically. For a high-level
argument of why this is true, let us ignore the Markov structure of the model for the moment.
As the CE-method matches moments of the target and proposal, applying it to fit model (3.21)
amounts to matching the moments of Gψ to those of the target posterior L(X|Y = y) in the SSM.
Unfortunately, the covariance of Gψ is given by

(
Σ−1 +BTΩ−1B

)−1, where Σ is the covariance
of all states, B = block-diag(B0, . . . , Bn) and Ω = block-diag (Ω0, . . . ,Ωn). Choosing the diagonal
matrix Ω such that the covariance of Gψ matches this expression is numerically expensive: we either
need to invert the large (dimension (n+ 1)m× (n+ 1)m) covariance matrix, or solve numerically
for the (n + 1)p parameters. The problem at hand is that we cannot decouple this into (n + 1)
equations of dimension p as we did for EIS, because all entries of (Σ−1 +BTΩ−1B)−1 depend on
all entries of Ω.

To make matters more concrete, the CE-method finds ψ = (z, ω2) such that model (3.21) maximizes
the cross entropy with the target PX|Y=y. For simplicity, let us assume that m = p, B is the identity
and we only observe a single y. Using Lemma 3.1, we see that when X ∼ N (µ,Σ), the conditional
distribution of X given Z = z, Gψ, is a Gaussian distribution with mean µ̃ = µ+Σ(Σ + Ω)

−1
(z − µ)

and covariance matrix Σ̃ =
(
Σ−1 +Ω−1

)−1 for Ω = diag
(
ω2
)
, where ω2 > 0. Assuming that Σ is

non-singular, we can reparameterize the objective function of the CE-method by µ̃,

max
z,ω2

∫
p(x|y) log gψ(x|z)dx = max

µ̃,ω2

∫
p(x|y)

(
−1

2
(x− µ̃)T Σ̃−1 (x− µ̃)− 1

2
log det Σ̃

)
dx

= max
µ̃,ω2
−1

2
(γ − µ̃)T Σ̃−1(γ − µ̃)− 1

2
trace

(
Σ̃−1Γ

)
− 1

2
log det Σ̃,

(3.23)

where γ = E (X|Y = y) and Γ = Cov (X|Y = y). Thus the optimal µ̃ is γ and to find the optimal
ω2 we have to minimize

trace
((
Σ−1 +Ω−1

)
Γ
)
− log det

(
Σ−1 +Ω−1

)
.

Taking the derivative w.r.t. 1
ω2 , we see that

Γi,i =

((
Σ−1 + diag

(
1

ω1
, . . . ,

1

ωp

))−1)
i,i

=
(
Σ− Σ (Σ + Ω)

−1
Σ
)
i,i

(3.24)

has to hold for all i = 1, . . . , (p× (n+1)), i.e. we have to choose ω2 such that the posterior marginal
variances Γi,i coincide with the marginal variances of Gψ.

Several problems arise: First of all, Equation (3.24) is not guaranteed to have a solution. For the
i-th unit-vector ei ∈ Rp we can reformulate Equation (3.24) to

Σi,i − Γi,i = eTi Σ
T (Σ + Ω)

−1
Σei > 0

and so we require Γi,i < Σi,i. While the law of total covariance asserts that

Σ = ECov (X|Y )︸ ︷︷ ︸
=Γ

+Cov (E (X|Y )) ,

it does not guarantee Γ ≺ Σ, which would imply Γi,i < Σi,i.

Second, even if there is an analytical solution Ω to Equation (3.24), in the CE-method we replace Γi,i
by the observed marginal variances Γ̂i,i obtained by importance sampling. The variation introduced
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Figure 3.2: We show the probability that the estimated posterior variance Γ̂ is bigger than the prior
variance 1 when varying the noise variance ω2. todo: ausführlicher beschreiben

by simulation can then lead to situations where Γ̂i,i > Σi,i. As an example take X ∼ N (0, 1), and
Y = X+η for η ∼ N (0, ω2). Then the conditional variance of X given Y = y is Γ = 1− 1

1+ω2 . Given
N i.i.d. samples X1, . . . XN from this distribution, their empirical variance Γ̂ = 1

N

∑N
i=1(X

i − X̄)2

follows a scaled χ2
N−1 distribution, i.e. N Γ̂

Γ ∼ χ2
N−1. Notice that we use the non-Bessel corrected

version of the empirical variance here, as it is the maximum-likelihood estimate.

Then

P
(
Γ̂ > 1

)
= P

(
N Γ̂

Γ
>
N

Γ

)
= 1− Fχ2

N−1

(
N

(
1 +

1

ω2

))
is the probability that Equation (3.24) has no solution ω2 ∈ R≥0. Here Fχ2

N−1
is the cumulative distri-

bution function of the χ2
N−1 distribution. As ω2 goes to∞, this probability approaches 1−Fχ2

N−1
(N)

which, for large N , is approximately 1−Fχ2
N−1

(N − 1) ≈ 1
2 , as χ2

N−1 ≈ N (N − 1, 2(N − 1)) (John-
son, Kotz, and Balakrishnan, 1994, Section 18.5). We illustrate this in Figure 3.2, displaying the
probability of failure in this setting for various combinations of N and ω2. In this figure, we see that
with growing N the threshold for ω2 leading to non-negligible failure probability becomes larger, as
expected. Thus, even in the very simple univariate Gaussian setting, for every N there is an ω2

such that the CE-method fails for Equation (3.21) with practically relevant probability.

In higher-dimensional settings, e.g. when applying the CE-method to SSMs, we can expect this
phenomenon to occur even more often. In the extreme case of independent marginals, i.e. when
Σ is a diagonal matrix, Equation (3.24) reduces to (n + 1)p many decoupled equations, where
Γ̂i,i, i = 1, . . . , (n + 1)p are independent. If all qi = P (Γi,i > Σi,i) are identical to q ∈ (0, 1), e.g.
because Σ and Ω are multiples of the identity, the number of failures follows a Binom ((n+ 1)p, q)
distribution, so that even small q may lead to a non-negligible number of failures if the number of
observations is high.

Finally, in the multivariate setting, the system (3.24) has no analytical solution. Instead, we have
to resort to numerical methods to find a solution Ω. Unfortunately, even evaluating the right-hand
side of (3.24) requires O(m3) operations, as we have to invert Σ+Ω. Additionally, we cannot hope
to reuse a singular-value, LR, or eigenvalue-decomposition for further evaluations, as Σ and Ω are
not guaranteed to be jointly diagonalizable. In the SSM context we may use the Kalman-smoother
to compute the marginal variances, but have to re-run the smoother for every evaluation.

If we admit noise variance ∞ in the univariate setting, then Γ > 1 implies that the CE-method
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chooses this as the estimate, i.e. Gψ̂CE
is N (0, 1), which is equal to the prior. We can interpret

this as having a missing observation, which, going back to the SSM context, the Kalman-filter
(Algorithm 1) can handle with only simple modifications, see e.g. (Durbin and Koopman, 2012,
Section 4.10). However, if there are a lot of failures, the optimally chosen Gψ̂CE

will be close to the
prior distribution of states X, and importance sampling is unlikely to be effective. Hence, we turn
to another approach that allows us to apply the CE-method to SSMs.

3.6.2 The Markov-approach
An alternative family of Gaussian proposals is given by directly modeling a Gaussian Markov
process on the states X:n. Again, this is sensible given the Markov structure of the target. This
parametrization is more flexible than using the posterior of a GLSSM with fixed prior as the
proposal. This flexibility, however, comes at the cost of requiring a larger number of parameters.
Here we propose with Gψ where

Gψ = L(U + v),

v ∈ R(n+1)m,

U0 ∼ N (0, R0R
T
0 ),

Ut = CtUt−1 +Rtνt,

Ct ∈ Rm×m,

νt ∼ N (0, Im),

Rt ∈ Rm×m lower triangular with positive diagonal

(3.25)

for t = 1, . . . , n, with U0 and ν1, . . . , νn independent. The number of parameters in

ψ = (v, C1, . . . , Cn, R0, . . . , Rn)

is (n + 1) · m for the mean v, n · m2 for the transition matrices Ct and (n + 1)m(m−1)
2 for the

Cholesky roots of innovation covariances, totaling O(n ·m2) many parameters. While these are
considerably more parameters than for the GLSSM-approach for large state dimension m, we will
see in the later part of this section that finding the optimal parameters for the CE-method can be
done analytically.

This approach, which we term the Markov-approach, was originally proposed by (Richard and
Zhang, 2007) for general unnormalized transition kernels as EIS proposals. However, because of its
lower number of parameters, one should favor the GLSSM-approach for EIS that operates on the
signals, see (Koopman, Lit, and Nguyen, 2019).

To perform importance sampling with Gψ in model (3.25) we not only need to simulate from Gψ

but also evaluate the unnormalized importance sampling weights w(x) = p(x|y)
gψ(x)

. Simulation from
Gψ is achieved by a simple recursion. For the weights note that

w(x) ∝ p(y|x)p(x)
gψ(x)

=

n∏
t=0

p(yt|xt)p(xt|xt−1)
gψ(xt|xt−1)

, (3.26)

where p(x0|x−1) = p(x0) and gψ(x0|x−1) = gψ(x0).

The Markov structure of model (3.25) implies that the precision matrix of Gψ is sparse, i.e. it has
a block-tridiagonal form. This is a well-known property of the precision matrix of Gaussian random
vectors, as the following two classical lemmas show. We show their proofs here for completeness.
For a general treatment, we refer the reader to (Lauritzen, 1996, Chapters 3 and 5).

Lemma 3.10. Let (X,Y ) be jointly Gaussian with distribution N (µ,Σ) where

µ = (µX , µY )

and
Σ =

(
ΣXX ΣXY
ΣY X ΣY Y

)
,
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are partitioned according to the dimensions of X and Y and Σ is non-singular. If

P = Σ−1 =

(
ΣXX ΣXY
ΣXY ΣY Y

)−1
=

(
PXX PXY
PY X PY Y

)
is the precision matrix of (X,Y ), partitioned as is Σ, then Cov(X|Y ) = P−1XX .

Proof. Without loss of generality, assume that both X and Y are centered. The conditional density
p(x|y) is proportional (in x) to the joint density p(x, y) with

log p(x, y) = −1

2

(
x y

)
P

(
x
y

)
+ C = −1

2

(
xTPXXx+ 2xTPXY y

)
+ C ′,

for constants C,C ′ that do not depend on x. As the conditional distribution of X given Y = y is
Gaussian (by Lemma 3.1), its covariance matrix is P−1XX .

Lemma 3.11. Let (X,Y, Z) ∼ N (µ,Σ) be jointly Gaussian with non-singular Σ. Then X ⊥ Y |Z
if, and only if, the sub-matrix of the precision matrix P = Σ−1 whose rows correspond to the entries
of X and columns correspond to the entries of Y is the 0 matrix.

Proof. Partition the conditional covariance matrix into

Cov ((X,Y )|Z) =
(
ΣXX|Z ΣXY |Z
ΣY X|Z ΣY Y |Z

)
.

As all distributions involved are Gaussian, X ⊥ Y |Z is equivalent to Cov ((X,Y )|Z) being a
block-diagonal matrix with blocks ΣXX|Z and ΣY Y |Z , which is equivalent to its inverse being a
block-diagonal matrix with blocks Σ−1XX|Z and Σ−1Y Y |Z . Its inverse is, by Lemma 3.10, the sub-matrix
of P whose rows and columns correspond to X and Y .

Applying Lemma 3.11 to model (3.25), we see that its precision matrix P is sparse, i.e. it is a block-
tri-diagonal matrix, as Ut ⊥ Us|U−t,−s for |t− s| > 1 and U−t,−s being the vector of all U0, . . . , Un
except for Ut, Us. Thus, the only entries of P that are potentially non-zero are those whose row and
column correspond to (Ut, Ut) for t = 0, . . . , n, (Ut, Ut−1) and (Ut−1, Ut) for t = 1, . . . , n. Therefore,
P has the following block-tridiagonal structure:

P =



P0,0 P0,1 0 · · · · · · 0 0
P1,0 P1,1 P1,2 0 · · · 0 0
0 P2,1 P2,2 P2,3 · · · 0 0
...

. . . . . . . . . . . . 0 0
0 0 0 · · · Pn−1,n−2 Pn−1,n−1 Pn−1,n
0 0 0 · · · 0 Pn,n−1 Pn,n


. (3.27)

As the precision matrix is the natural parameter for the multivariate Gaussian exponential family,
we see that model (3.25), parameterized by (P−1v, P ) form a natural exponential family and we
can apply Theorem 3.6 to obtain a central limit theorem when applying the CE-method for this
model.

The sparsity of P implies that P = LLT has a sparse Cholesky root L, which will make computa-
tions efficient. To see that L is sparse, we apply the following Theorem, slightly adapted to our
notation, from the theory of Gaussian-Markov-Random-fields (GMRF), i.e. Gaussian models whose
dependency structure is given by a graph, with edges between nodes indicating non-zero entries in
the precision matrix.

Theorem 3.10 ((Gelfand et al., 2010, Theorem 12.14)). Let X = (X0, . . . , Xn) ∈ R(n+1)m be a
GMRF wrt to the labeled graph G, with mean µ and symmetric positive-definite precision matrix P .
Let L be the Cholesky factor of P and define for 0 ≤ t < s ≤ n the future of t except s as

F (t, s) = {t+ 1, . . . , s− 1, s+ 1, n}.
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Then
Xt ⊥ Xs|XF (t,s) ⇔ Lt,s = 0.

In the preceding theorem XF (t,s) is the vector of all Xu for u ∈ F (t, s) and Lt,s ∈ Rm×m is
the sub-matrix of L whose rows correspond to Xt and columns to Xs. From Theorem 3.10 we
immediately obtain the following:

Corollary 3.2 (sparsity of L in model (3.25)). Let U ∼ Gψ as in Equation (3.25), P ≻ 0 be the

precision matrix of
←
U = (Un, . . . , U0) and L be the Cholesky root of P . Then L is a lower-block-

diagonal matrix, with at most nm2 + (n+ 1)mm−1
2 non-zero entries:

L =



Ln,n 0 · · · · · · · · · 0 0
Ln−1,n Ln−1,n−1 0 · · · · · · 0 0

0 Ln−2,n−1 Ln−2,n−2 0 · · · 0 0
...

. . . . . . . . . . . . 0 0
0 0 0 · · · L1,2 L1,1 0
0 0 0 · · · 0 L0,1 L0,0


, (3.28)

where Lt,t ∈ Rm×m, t = 0, . . . , n are lower triangular matrices with positive diagonal entries and
Lt−1,t ∈ Rm×m, t = 1, . . . , n are square matrices.

From L in Corollary 3.2 we obtain an iterative method of sampling from Gψ: If v + U ∼ Gψ,
then, as CovU =

(
LLT

)−1
= L−TL−1, it holds that LTU ∼ N (0, I) follows a standard normal

distribution. Thus to simulate from Gψ we may solve

LTU =
←
Z

where
←
Z = (Zn, . . . , Z0) ∼ N (0, I). Using the structure available in L, we see that this is equivalent

to first solving
LT0,0U0 = Z0

and then recursively solving for t = 1, . . . , n

LTt,tUt + LTt−1,Ut−1 = Zt−1.

Rearranging terms, provided Lt,t is non-singular, we end up with the Markov-process

Ut = L−Tt,t L
T
t−1,tUt−1 + L−Tt,t Zt, (3.29)

where Zt is, by construction, independent of Ut−1. Thus for model (3.25), we obtain

Rt = L−Tt,t for t = 0, . . . , n,

Ct = L−Tt,t L
T
t−1,t for t = 1, . . . , n.

(3.30)

Here we see why we chose to use
←
U in Corollary 3.2: had we applied Theorem 3.10 to U directly we

would have ended up with a Markov process in reverse time.

We now turn our attention to applying the CE-method to model (3.25). Following a similar argument
as in the discussion surrounding Equation (3.23), we see that we may match the mean v to that of
P and it suffices to choose P , the precision matrix of U , such that it minimizes

1

2
trace

(
P Γ̂
)
− 1

2
log detP (3.31)

where Γ̂ is the importance sampling estimate of the joint covariance matrix of all states X. This is
equivalent to minimizing

DKL

(
N (0, Γ̂)

∣∣∣∣∣∣N (0, P−1)
)
.
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Here P is restricted to precision matrices that may arise in model (3.25), i.e., by Corollary 3.2,
P = LLT where L possess structure as in (3.28). At first glance, this problem seems more involved
than solving Equation (3.24): after all, the optimal P depends on the whole covariance matrix Γ̂.
However, it turns out that the sparsity we enforce in L allows us to compute analytically the optimal
L̂ that minimizes Equation (3.31). Additionally, due to the Markov-structure of our proposal, L̂
depends only on the block-tri-diagonal component of Γ̂, i.e. only the covariances Cov(Xt, Xt−1) and
Cov(X0) are required. This is sensible - all information about the Markov transitions is encoded in
these covariances if we assume that X is a Gaussian Markov process.

To make this argument rigorous, let us apply the following result (stated in our notation).

Theorem 3.11 ((Schäfer, Katzfuss, and Owhadi, 2021, Theorem 2.1)). Let Γ be a positive-definite
matrix of size n × n. Given a lower-triangular sparsity set S ⊂ {1, . . . , n}2, i.e. i ≥ j for all
(i, j) ∈ S, let

L̂ = argminL∈S DKL
(
N (0,Γ)

∣∣∣∣N (0, (LLT )−1))
be the Cholesky root of the closest Gaussian (wrt. the KL-divergence) with sparsity S = {A ∈ Rn×n :
Ai,j ̸= 0⇒ (i, j) ∈ S}.
Then the following holds: The nonzero entries of the i-th column of L̂ are given by

Lsi,i =
Γ−1si,sie1√
eT1 Γ

−1
si,sie1

, (3.32)

where si = {j : (i, j) ∈ S}, Γsi,si is the restriction of Γ to the set of indices si and e1 ∈ R|si| is the
first unit vector.

Exploiting the Markov structure of our proposals, we immediately obtain the following:

Corollary 3.3. Let S be the sparsity set of a Gaussian Markov process of the form Equation (3.25),
i.e.

S =
{
((t, i), (s, j)) ∈ ({0, . . . , n} × {1, . . . ,m})2 | (t = s and i ≥ j) or t = s+ 1

}
,

see also Equation (3.28), and let Γ be a positive definite matrix of size ((n+ 1)m)× (n+ 1)m with
blocks

Γs,t = (Γ(s,i),(t,j))i,j=1,...,m.

Then L̂ in Theorem 3.11 depends only on the block-diagonal entries Γt,t, t = 0, . . . , n and block
off-diagonal entries Γt,t+1, t = 0, . . . , n.

If, in particular, Γ is the covariance matrix of Gaussian Markov process, L̂ = chol(Γ−1).

We have thus shown the following: The covariance matrix of the KL-optimal Gaussian Markov
process for the positive definite covariance matrix Γ with O(n2m2) entries only depends on O(nm2)
many entries, the marginal covariances. In particular, if we can find a centered Gaussian Markov
process (Xt)t=0,...,n whose marginal covariances fulfill

Cov(Xt) = Γt t = 0, . . . , n

Cov(Xt, Xt+1) = Γt,t+1 t = 0, . . . , n,

then its law L(X) is the one we seek. The following proposition puts all the pieces together.

Proposition 3.6 (the CE-method for the Markov proposal). Let P be a probability measure on
R(n+1)×m with mean µ and positive definite covariance matrix Γ, partitioned into blocks

Γs,t = (Γ(s,i),(t,j))i,j=1,...,m.

Let (
Jt,t 0
Jt+1,t Zt+1,t+1

)
= chol

(
Γt,t Γt,t+1

Γt+1,t Γt+1,t+1

)
.



64 CHAPTER 3. IMPORTANCE SAMPLING IN STATE SPACE MODELS

Then the optimal cross-entropy parameter

ψCE = argminψ=(v,C1,...,Cn,R0,...,Rn)DKL (P||Gψ)

adapt notation to model? use tildes as cholesky roots

for the Markov proposal Gψ from model (3.25) exists and is unique. The components of ψCE are
given by

v = µ

R0 = chol(Γ0,0)

and for t = 1, . . . , n

Ct = Jt+1,tJ
−1
t,t

Rt = Zt+1,t+1

Thus, given ν and Γ, ψCE can be obtained in O(nm3) many operations.

Proof. It only remains to show the uniqueness and existence of ψCE, as well as its representation.
The discussion surrounding Equation (3.31) shows that v = µ has to hold, so we may assume that
P and the proposal are both centered. As Γ is positive definite, so are all of its sub-matrices, and
we may apply Corollary 3.3. Therefore, if we can show that there is a unique Gaussian Markovian
probability measure whose covariance matrix matches Γ as in that corollary we are done.

Let (Ut)t=0,...,n ∼ GψCE . Then
Cov(U0) = R0R

T
0 = Γ0,0,

and from the Cholesky decomposition we obtain for t = 0, . . . , n− 1(
Jt,tJ

T
t,t Jt,tJ

T
t+1,t

Jt+1,tJ
T
t,t Jt+1,tJ

T
t+1,t + Zt+1,t+1Z

T
t+1,t+1.

)
=

(
Γt,t Γt,t+1

Γt+1,t Γt+1,t+1

)
.

As Zt+1,t+1 is a lower triangular matrix with positive diagonal and

Γt+1,t+1 − Γt+1,tΓ
−1
t Γt,t+1 = Zt+1,t+1Z

T
t+1,t+1,

it is the Cholesky root of the Schur complement Γt+1,t+1 − Γt+1,tΓ
−1
t Γt,t+1, which, recalling

Lemma 3.1, we can think of as a conditional covariance matrix. Therefore, using induction over
t = 0, . . . , n− 1, we obtain

Cov (Ut+1) = Ct+1 Cov (Ut)C
T
t+1 +Rt+1R

T
t+1

= Jt+1,tJ
−1
t,t Γt,tJ

−T
t,t J

T
t+1,t + Γt+1,t+1 − Γt+1,tΓ

−1
t Γt,t+1

= Γt+1,t+1

and

Cov (Ut+1, Ut) = CtCov (Ut) = Jt+1,tJ
−1
t,t Jt,tJ

T
t,t = Γt+1,t.

This shows the existence. For uniqueness, note that model (3.25) enforces that Rt is a lower
triangular matrix with positive diagonals. As Rt+1R

T
t+1 is the conditional covariance of Ut+1 given

Ut which is, by Lemma 3.1 given by Γt+1,t+1 − Γt+1,tΓ
−1
t,t Γt+1,t. Thus the R matrices are unique as

well. As Cov(Ut+1, Ut) = CtCov(Ut), we can show that, additionally, also Ct is unique.

rewrite everything in terms of this prop

When using the CE-method, we do not have access to the mean and covariances necessary to apply
this proposition. Instead, we may apply the CE-method to estimate ψ in model (3.25) by replacing
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these unknown moments with their importance sampling estimates. Given importance samples
U1, . . . , UN for L(X|Y = y) and associated auto-normalized weights W 1, . . . ,WN , we estimate v
by

v̂ =

N∑
i=1

W iXi (3.33)

and the empirical covariance matrices

Ĉov (Xt, Xt−1) =
N∑
i=1

W i(Xi
t:t−1 − v̂t−1:t)(Xi

t:t−1 − v̂t−1:t)T

Ĉov (X0) =

N∑
i=1

W i(Xi
0 − v̂0)(Xi

0 − v̂0)T
(3.34)

These steps are summarized in Algorithm 7.

Algorithm 7 The CE-method for the Markov proposal (3.25)

Require: LCSSM (Definition 3.5), observations Y , initial estimate ψ̂0 =
(
v0, C0, R0

)
, sample size

N
1: set l = 0
2: repeat
3: sample U1 + vl, . . . , UN + vl

i.i.d∼ Gψ̂l with fixed seed ▷ Equation (3.25)
4: determine auto-normalized weights W 1, . . . ,WN ▷ Equation (3.26)
5: estimate v̂l+1 ▷ Equation (3.33)
6: estimate Ĉov(Ut, Ut−1), t = 1, . . . , n, and Ĉov(U0) ▷ Equation (3.34)
7: determine Cl+1 and Rl+1 ▷ Proposition 3.6
8: set ψ̂l+1 =

(
v̂l+1, Cl+1, Rl+1

)
9: set l = l + 1

10: until ψ̂l converged
11: return ψ̂CE = ψ̂l

To run Algorithm 7 we require an initial value for ψ̂0. If a suitable ψ̂0 is not available, we can
obtain one from the LA by sampling X1, . . . , XN from the LA and performing steps 5 to 8 from
the loop. Alternatively, we could also directly base our initial value on the smoothing distribution
of the GLSSM that the LA is based on. The Kalman smoother (Algorithm 2) provides us with the
analytically available covariances Cov (Xt, Xt−1|Z = z) and the marginal covariance Cov (X0|Z = z)
can be computed as well.

The convergence criteria in Algorithm 7 is similar to that used for EIS: we stop until the absolute
or entry-wise relative difference of ψ̂l and ψ̂l+1 is smaller than a predetermined threshold, or a
fixed number of iterations has passed. For the matrices involved, we use the Frobenius norm and
the Euclidean distance for the mean v.

In Line 3 we use the standard praxis of CRNs to ensure numerical convergence. This is similar to
EIS and the maximum likelihood estimates from Section 3.7.

We give an overview of the time and space complexities of each line in Algorithm 7 in Table 3.1
The total time complexity of a single iteration of Algorithm 7 is O

(
N nm2 + nm3

)
and its space

complexity is O
(
N nm+ nm2

)
. Let us elaborate on the complexities of each step:

Line 3 Generate N i.i.d. samples from model (3.25), where each simulation requires O(n) matrix-
vector multiplications of dimension m.

Line 4 To evaluate the weights, Equation (3.26), we have to evaluate for every sample O(n)-times
the density of a m-variate Gaussian distribution, while this usually has time-complexity
O(m3), we have access to the Cholesky root Rt, so this step has only time-complexity O(m2).
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step time complexity space complexity

simulation (Line 3) O
(
N nm2

)
O (N nm)

weights (Line 4) O(N nm2) O (N)
estimating v (Line 5) O(N nm) O (nm)
estimating covariances (Line 6) O(N nm2) O (nm)
determining C and R (Line 7) O(nm3) O(nm2)

Table 3.1: Time and space complexities of individual steps in Algorithm 7.

In Equation (3.26) we also need to compute p(yt|xt) and p(xt|xt−1). Assuming conditional
independence of observations, p(yt|xt) =

∏m
i=1 p(y

i
t|(Btxt)i), evaluating the first term requires

only O(m2) operations. For the second term, if we allow pre-computation of the Cholesky
roots of innovations off-line (in O(m3) time), this step reduces to O(m2) as well.

Line 5 Calculating the weighted mean v̂ ∈ R(n+1)m, Equation (3.33), requires O(N nm) operations.

Line 6 Calculating the weighted covariance matrices, Equation (3.34), requires (n+ 1) times multi-
plying N many m× 1 with 1×m vectors.

Line 7 For each of the O(n) many Ct and Rt we have to calculate Cholesky decompositions and
invert triangular matrices of dimension m.

An efficient implementation of Algorithm 7 can improve on the practically relevant computational
time. There is no need to calculate the Ct matrices explicitly, instead we can calculate CtUt−1 =
Jt+1,tJ

−1
t,t Ut−1 efficiently by back-substitution, as Jt,t is a lower triangular matrix.

The main bottleneck for space lies in the O(N nm) simulation part, and we may reduce this by
simulating twice from model (3.25) using CRNs, and only storing the samples for a single time step
(dimension O(N m)) in each simulation. In the first pass, we only calculate the weights, and in the
second pass, we calculate v̂ and the required covariance matrices. For this, we only need the 2N
samples of dimension m from time t and t + 1, i.e. O(N m) space. This reduces the total space
complexity to O(N m+ nm2).

We demonstrate these improvements in Algorithm 8. Additionally, we calculate the weights on the
log scale for numerical stability.

The advantage of Algorithms 7 and 8 over applying the CE-method to the GLSSM model (3.21)
are multiple: First of all, as long as the involved covariance matrices are positive definite, the two
algorithms produce valid proposals, i.e. they do not have the degeneracy problem we observed in
Section 3.6.1. When matrices are only positive-semi definite, replacing inverses with generalized
inverses still yields a valid model. Additionally, determining the optimal parameters (v, C,R) or
(v, J,R) is numerically stable, involving only inversion of small matrices. Compare this with solving
Equation (3.24), where we need to employ a numerical scheme to solve for the diagonal entries of Ω.

After having determined ψ̂CE for model (3.25), generating N samples requires only O(N nm2)
operations, whereas sampling from model (3.21) requires O(nm3 +N nm2) operations, as we need
an initial run of the Kalman filter. Unless N < m, this difference is negligible, and the case where
N < m is not really of interest, as we would expect importance sampling to require a much larger
number of samples, i.e. N ≫ m.

However, the two algorithms presented in this section also come with some drawbacks, especially
if the dimension m of states is large. This affects the algorithms in multiple ways: when m is
large, computation of the Cholesky decomposition in Proposition 3.6 becomes more time-intensive.
Additionally, the dimension of the parameter ψ increases quadratically inm, so we expect convergence
to be slower, requiring a larger sample size N to find the optimal ψ̂CE. For an empirical study in
this direction, see Section 3.8.
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Algorithm 8 Time and space improved version of Algorithm 7. Instructions involving the free index
i are to be performed for all i = 1, . . . , N samples. For simplicity of notation we let Rl = (Rl0, . . . , R

l
n)

and J l = (J l0,0, J
l
1,0, . . . , J

l
n−1,n−1, J

l
n,n−1) for l ∈ N0.

Require: LCSSM (Definition 3.5), observations Y , initial estimate ψ̂0 =
(
v0, R0, J0

)
, sample size

N
1: set l = 0
2: repeat
3: simulate ν10 , . . . , νN0

i.i.d∼ N (0, I)
4: set U i0 = Rl0ν

i
0

5: set Xi
0 = vl0 + U i0

6: set logwi = log p(y0|Xi
0) + log p(Xi

0) +
1
2∥νi0∥2 ▷ log g(Xi

0) = − 1
2∥νi0∥22 + C

7: store current RNG state
8: for t← 1, . . . , n do
9: simulate ν1t , . . . , νNt

i.i.d∼ N (0, I)
10: set U it = (Jt+1,t)

T (Jt,t)
−1U it−1 +Rltν

i
t ▷ backsubstitution

11: set Xi
t = vlt + U it

12: set logwi = logwi + log p(yt|Xi
t) + log p(Xi

t |Xi
t−1) +

1
2∥νit∥2

13: end for
14: set logwi = logwi −maxi=1,...,N logwi ▷ ensure logwi ≤ 0
15: set wi = exp(logwi)

16: set W i = wi∑N
i=1 w

i ▷ auto-normalized weights

17: set vl+1
0 =

∑N
i=1W

iXi
0

18: restore RNG state
19: for t← 1, . . . , n do
20: simulate ν1t , . . . , νNt

i.i.d∼ N (0, I)
21: set U it = (Jt+1,t)

T (Jt,t)
−1U it−1 +Rltν

i
t ▷ backsubstitution

22: set Xi
t = vlt + U it

23: calculate v̂l+1
t ▷ Equation (3.33)

24: calculate covariances ▷ Equation (3.33)
25: end for
26: set ψ̂l+1 =

(
v̂l+1, R̂l+1, Ĵ l+1

)
27: set l = l + 1
28: until ψ̂l converged
29: return ψ̂CE = ψ̂l



68 CHAPTER 3. IMPORTANCE SAMPLING IN STATE SPACE MODELS

3.7 Inference in PGSSMs
Once we have chosen a suitable PGSSM to model the observations (yt)t=0,...,n, we are interested
in statistical inferences. This is a two-part procedure: first we must estimate the unknown hyper-
parameters θ, which we will do by maximum likelihood estimation. Then we have to obtain a
description of the conditional distributions of interest, e.g. the conditional distribution of states
given observations or the conditional distribution of future, yet unavailable, observations.

3.7.1 Maximum likelihood estimation
Until now, we have assumed that the SSM under consideration is completely known, i.e. we have
access to the true transition and observation kernels. For the models considered in this thesis
(Chapter 4), this is unrealistic, as they are not based on concrete physical processes but are
rather statistical approximations of the true underlying dynamics. The transition densities of, e.g.,
Equation (3.4) will depend on the covariance matrix of innovations, of which we have no a priori
knowledge and for negative binomially distributed observations the overdispersion parameter r will
be unknown. Let us denote by θ ∈ Rl the vector of these hyperparameters.

check l / k with psis

To make this dependence explicit, we will introduce subscripts θ where appropriate, i.e. Pθ is a
target distribution that additionally depends on θ, pθ its density et cetera. This section is loosely
based on (Durbin and Koopman, 2012, Chapter 7 & 11) and (Chopin and Papaspiliopoulos, 2020,
Chapter 14)

To determine a suitable value of θ, multiple options are available. Here, we opt for a frequentist
approach, using maximum likelihood estimation to determine an optimal θ̂. Therefore, given
observations y ∈ R(n+1)×p, θ̂ maximizes the likelihood pθ(y) and can be obtained as the global
maximum of the following optimization problem:

max
θ∈Θ

pθ(y).

For numerical stability, we should maximize the log-likelihood instead, i.e. solve

max
θ∈Θ

log pθ(y). (3.35)

Here Θ ⊆ Rl is the parameter space. To solve this optimization problem using gradient ascent
algorithms, we need access to both the likelihood and its derivatives. Thus, in the following, we
will assume that θ 7→ log pθ(y) is sufficiently smooth, to apply these methods, i.e. it has continuous
derivatives of second order.

While the Kalman-filter (Algorithm 1) allows analytical computation of this likelihood GLSSMs, in
general SSMs it is numerically intractable. The reason for this is that

pθ(y) =

∫
pθ(x, y)dµ(x)

is a high-dimensional integral, which is hard to evaluate numerically. Instead, we will use importance
sampling to estimate the likelihood. For this, let us regard pθ(x, y) as an unnormalized density in
x. The missing integration constant is then just pθ(y) and the normalized density is pθ(x|y). If
G≫ P is a proposal distribution whose density g with respect to µ we can evaluate analytically,
i.e. not only up to a constant, we see that for the unnormalized weights w̃θ(x) = pθ(x,y)

g(x) , that
pθ(y) = G[w̃θ]. Thus we may estimate the likelihood by’pθ(y) = 1

N

N∑
i=1

w̃θ(X
i)
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for X1, . . . , XN i.i.d∼ G and N ∈ N. To evaluate the gradient, notice that as ∇θpθ(x, y) =
pθ(x, y)∇θ log pθ(x, y), we have, provided we can exchange integration and differentiation,

∇θpθ(y) = ∇θ
∫
pθ(x, y) dµ(x) =

∫
pθ(x, y)∇θ log pθ(x, y) dµ(x)

= G[w̃θ∇θ log pθ(x, y)],

and so we may estimate the gradient byÿ�∇θpθ(y) =
1

N

N∑
i=1

w̃θ(X
i)∇θ log pθ(Xi, y)

Similarly, we can estimate the log-likelihood by Plug-Inÿ�log pθ(y) = log

(
1

N

N∑
i=1

w̃θ(X
i)

)
(3.36)

and its gradient, using the fact that the gradient of log f for f : Rl → R is 1
f∇θf , by¤�∇θ log pθ(y) =

(
1

N

N∑
i=1

w̃θ(X
i)

)−1(
1

N

N∑
i=1

w̃θ(X
i)∇θ log pθ(Xi, y)

)

=

N∑
i=1

W i
θ∇θ log pθ(Xi, y)

where W i
θ =

w̃θ(X
i)∑N

i=1 w̃θ(X
i)

are the auto-normalized weights. Note that, by Jensen’s inequality, these
estimates are biased.

To solve the optimization problem (3.35) we will again employ CRNs. If the densities involved are
twice differentiable, this device ensures that the random objective function θ 7→∑N

i=1 w̃θ(X
i) is

twice differentiable, and so we can indeed apply gradient ascent to find a local maximum. This is
an advantage of performing global importance sampling over SMC, i.e. particle filter, methods. To
avoid collapse to a single particle, SMC methods perform intermediate resampling steps, which
make the objective function discontinuous. While particle smoothing methods can mitigate this
problem, they are more expensive than standard SMC and, as the importance sampling estimates of
the log-likelihood and its gradient are biased, the usual requirements for stochastic approximation
methods are not fulfilled. For a more thorough discussion of the challenges maximum likelihood
estimation with SMC methods faces, we recommend (Chopin and Papaspiliopoulos, 2020, Chapter
14).

While MLEs have a strong frequentist foundation, let us stress that, for the models that we
investigate in Chapter 4, the frequentist properties of the estimates are not of interest. The reason
for this is that a frequentist interpretation requires us to imagine, at least hypothetically, an infinite
repetition of the data-generating process. For the data at hand, such repetition is nonsensical:
the pandemic is a „one-off“ event that will not be replicated under even approximately similar
circumstances. Therefore, we will choose to view the estimation procedure more as a hyper-parameter
tuning step, rather than true frequentist inference. While we can compute asymptotic confidence
intervals for θ̂, see, e.g., (Durbin and Koopman, 2012, Chapter 11.6), (Chopin and Papaspiliopoulos,
2020, Chapter 14.8), these are not of practical interest for similar reasons.

As an alternative to modeling θ as fixed, but unknown, and performing maximum-likelihood
estimation to obtain θ̂, one might also model θ as random with prior density p(θ), such that the full
model becomes p(x, y, θ) = p(x, y|θ)p(θ). In this setup, sometimes called the Bayesian treatment
of SSMs (Durbin and Koopman, 2012, Section 13.1), the main interest still lies in the posterior
density p(x, θ|y), which, depending on the model at hand, can drastically increase the difficulty of
the problem: even if p(x, y|θ) is an analytically tractable model such as a GLSSM, unless the prior
is chosen to be conjugate, one has to resort to, e.g., MCMC-methods.
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By the structure of the model, Equation (3.2), the log density and its gradient can be computed
efficiently by

log pθ(x, y) = log pθ(x0) +

n∑
t=1

log pθ(xt|xt−1) + log pθ(yt|xt, yt−1)

∇θ log pθ(x, y) = ∇θ log pθ(x0) +
n∑
t=1

∇θ log pθ(xt|xt−1) +∇θ log pθ(yt|xt, yt−1),

respectively.

Similarly, when proposing with a GLSSM or Markov-proposal for a PGSSM, the weights have
similar structure, seeEquations (3.22) and (3.26), which makes calculation of w̃ efficient.

For the remainder of this section, let us consider the GLSSM-proposal obtained by EIS for a PGSSM
with linear signal, as this is the main setting of Chapter 4. For this we obtain

w̃θ(x) = w̃θ(s)g(z)
pθ(y|s)
g(z|s) = g(z)

n∏
t=0

pθ(yt|st)
g(zt|st)

,

where st = Btxt, t = 0, . . . , n, is the signal, and so the log-likelihood is given by

log pθ(y) = log gθ(z) + logE (wθ(S)|Y = y) (3.37)

and can be estimated byÿ�log pθ(y) = log gθ(z) + log

(
1

N

N∑
i=1

n∏
t=0

pθ(yt|Sit)
g(zt|Sit)

)
. (3.38)

Notice that log gθ(z) is the likelihood in a GLSSM, which can be computed efficiently by the
standard Kalman filter (Algorithm 1). As in the GLSSM-approach we propose with an GLSSM
whose state density g(x) and observation matrices Bt, t = 0, . . . , n are equal to those of the target,
the log-likelihood log gθ(z) also depends on θ. The estimated gradient of the log-likelihood is¤�∇θ log pθ(y) = ∇θ log gθ(z) +

N∑
i=1

W i
θ

n∑
t=0

∇θ log pθ(yt|Sit).

The gradient of the GLSSM log-likelihood can be obtained either numerically or analytically by
employing the Kalman filter and smoother (Koopman and Shephard, 1992), however, numerical
evaluation may be faster if the dimension of θ is small compared to the length of the time series, as
evaluating the likelihood only requires a single application of the Kalman filter.

As the observation densities g(zt|st) do not depend on θ, their derivatives do not appear in the above
estimate. However, when using EIS to determine an optimal proposal, the parameter ψ = (z, ω)
implicitly depends on θ. Accounting for this yields the gradient¤�∇θ log pθ(y) = ∇θ log gθ(z) +

N∑
i=1

W i
θ

(
n∑
t=0

∇θ log pθ(yt|Sit)−∇θ log gθ(zt|Sit)
)
,

as ∇θ 1
gθ(z|s) = − 1

gθ(z|s)∇θ log gθ(z|s). The computation of this additional term is much more
involved, as the parameters z,Ω are found through an iterative numerical scheme. Instead, we
favor numerical differentiation of the whole procedure to evaluate the likelihood at θ, including the
method of finding an optimal importance sampling scheme.

As a single evaluation of the log-likelihood can become very expensive we want our procedure to be
as efficient as possible. To this end, (Durbin and Koopman, 1997) provides several improvements
to the basic algorithm if the model is a PGSSM with a linear signal. Their contributions consist
of a bias correction for the log-likelihood, the use of antithetic and control variables to reduce
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Monte-Carlo error for importance sampling and a deterministic initialization procedure. Let us
briefly summarize these ideas, adapted to our notation. As the computational gains for control
variates in the presence of antithetic variables seem to be limited, we do not give the same level of
detail here, for an in-depth analysis, we refer the reader to the source.

For bias reduction, a second-order Taylor series expansion shows that for w̃· = 1
N

∑N
i=1 w̃(X

i),

E (log w̃·)− logGw̃ = E log

(
1 +

w̃· −Gw̃

Gw̃

)
=
w̃· −Gw̃

Gw̃
− 1

2

(
w̃· −Gw̃

Gw̃

)2

+Op(N−
3
2 ),

provided w̃ ∈ L3(G). Thus, estimating the second order term by − σ̂2

2Nw̃·
, where σ̂2 is the empirical

variance of the unnormalized weights, we can perform a bias reduction by estimating

̂log pθ(y) = log (w̃·) + log gθ(z) +
σ̂2

2Nw̃·
(3.39)

The second improvement of (Durbin and Koopman, 1997) is the use of antithetic variables and
control variates, a device to reduce Monte-Carlo variance. The main idea of an antithetic variable
is to construct for each sample Xi, i = 1, . . . , N , another sample X̃i that has the same distribution
as Xi, but is negatively correlated with Xi. This has two effects: first of all, we increase the number
of samples used for importance sampling and second, as the new samples are negatively correlated
with the old samples, the Monte-Carlo variance is reduced. The computation of these samples is
usually much faster than creating new samples, which requires the use of the expensive FFBS or
simulation smoother algorithms.

Definition 3.6 (antithetic variable). Let X, X̃ ∈ Rk be two random variables with the same
distribution, L(X) = L(X̃) and f : Rk → R. Then X̃ is called an antithetic variable of X for f , if
Cov

(
f(X̃), f(X)

)
< 0. If k = 1 and f is the identity, we just say that X̃ is an antithetic variable

of X.

(Durbin and Koopman, 1997) introduce two antithetic variables: balanced for location and balanced
for scale, both of which are tailored to the multivariate normal distribution.

Definition 3.7 (antithetic variable balanced for location and scale, (Durbin and Koopman, 1997)).
Let X ∼ N (µ,Σ) for µ ∈ Rk and Σ ∈ Rk×k positive definite. We call

X̃ = µ+ (µ−X) (3.40)

the antithetic balanced for location. If L ∈ Rk×k is a Cholesky root of Σ and

X = µ+ Lε

with ε ∼ N (0, I), let c = εT ε ∼ χ2
k and c′ = F−1

χ2
k
(1− Fχ2

k
(
√
c)). We call

X̌ = µ+

√
c′

c
(X − µ) (3.41)

the antithetic balanced for location.

Lemma 3.12. In the above definition, X̃i is an antithetic variable of X for the coordinate functions
fi : R

k → R, fi(x) = xi, i = 1, . . . , k. Furthermore, c̃ is an antithetic variable of c.

Proof. It is easy to see that X̃ has the same distribution as X. Furthermore

Cov
(
fi(X), fi(X̃)

)
= Cov (2µi −Xi, Xi) = −Σi,i < 0.
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For c and c̃, let U = Fχ2
k
(c), then U ∼ Unif(0, 1) and Ũ = 1− U = Fχ2

k
(c̃). As Ũ ∼ Unif(0, 1) as

well, L(c) = L(c̃). In (Whitt, 1976, Lemma 2.3) it is shown that for any pair of real-valued random
variables (Y,W ) with CDF H and marginal CDFs F,G, it holds

Cov (Y,W ) =

∫
R2

H(y, w)− F (y)G(w) dy dw,

and, furthermore, by (Whitt, 1976, Theorem 2.1 and Lemma 2.4) that the joint CDF of (c, c̃) is
(y, w) 7→ max{0, F (y) +G(w)− 1}, where F is the CDF of c and G the CDF of c̃. As

a+ b− 1 = ab+ a(1− b) + b− 1 = ab− (1− a)(1− b) < ab

for all a, b ∈ (0, 1), we have

Cov (c, c̃) =

∫
R2

H(y, w)− F (y)G(w) dy dw

=

∫
R2

max{0, F (y) +G(w)− 1} − F (y)G(w) dy dw < 0.

Let us mention that, by the properties of the standard multivariate normal distribution, c = ∥u∥
and u

∥u∥ are independent. Writing

X = µ+ ∥u∥L u

∥u∥ = µ+ ∥u∥X − µ√
c
,

we see that
X̌ = µ+

√
c̃
X − µ√

c

has the same distribution as X, as c̃ ∼ L(∥u∥2) and is independent of X−µ√
c

.

Given a GLSSM-proposal and samples X1, . . . , XN from it, we can cheaply calculate these antithetic
variables: for the location balanced antithetic we can calculate the mean using the Kalman-smoother
and for the scale balanced antithetic we can calculate c and c′ using the inverse CDF of the χ2

k

distribution and the standard normal samples used to sample Xi in the first place, for which fast
implementations are readily available. Incidental, we obtain a third antithetic,

X̆ = µ−
√
c′

c
(X − µ) (3.42)

for free. We can then estimate the log-likelihood in Equation (3.39) by replacing each occurrence of
w̃θ(X

i) by

1

4

(
w̃θ(X

i) + w̃θ(X̃i) + w̃θ(X̌i) + w̃θ(X̆i)
)
. (3.43)

As the procedure to evaluate the likelihood by importance sampling becomes expensive as the
dimension of the model increases, (Durbin and Koopman, 1997) recommend finding an initial value
θ̂0 by maximizing a deterministic version of Equation (3.36). For this, denote by s∗ the mode of the
linear signal, conditional on the pseudo-observations z. As S follows a multivariate Gaussian, s∗ is
also the mean which can be computed efficiently by the Kalman or signal-smoother. Approximating
the conditional expectation in Equation (3.37) by wθ(s∗) then yields

log pθ(y) ≈ log gθ(z) + logwθ(s
∗), (3.44)

which can be evaluated without simulation by the LA. A better approximation can be obtained by
performing a fourth-order Taylor expansion of s 7→ wθ(s) around the mode s∗, which yields

log pθ(y) ≈ log gθ(z) + logwθ(s
∗) + log

1 +
1

8

n∑
t=1

m∑
j=1

l
(4)
t,j (s

∗)v2t,j

 , (3.45)
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where l(4) is the fourth derivative of the log-weights s 7→ logwθ(s) and vt,j is the conditional
variance Var (St,j |Z = z) in the proposal. Again, we refer the interested reader to the source for
the details.

Algorithm 9 Maximum likelihood estimation in a PGSSM with linear signal using EIS.
Require: parameterized PGSSM with linear signal, initial θ0 ∈ Θ, observations y ∈ R(n+1)p,

number of samples N
1: function approx_loglik(θ)
2: obtain LA of the PGSSM for θ ▷ Algorithm 5
3: obtain mode s∗ and conditional variances vt,j from the LA ▷ Algorithms 1 and 2
4: return approximate log-likelihood ▷ Equation (3.44) or Equation (3.45)
5: end function

6: function estimate_loglik(θ)
7: obtain LA of the PGSSM for θ ▷ Algorithm 5
8: obtain EIS proposal G(z,Ω) ▷ Algorithm 6, LA as initial values
9: sample N signals Si from S|Z = z in EIS ▷ Algorithm 3 or signal smoother

10: obtain mode s∗ in EIS proposal ▷ Algorithm 2 or signal smoother
11: calculate antithetic variables S̃i, Ši, S̆i ▷ Equations (3.40) to (3.42)
12: set w̃iθ =

1
4

(
w̃θ(X

i) + w̃θ(X̃i) + w̃θ(X̌i) + w̃θ(X̆i)
)

Equation (3.43)

13: set w̃· = 1
N

∑N
i=1 w̃

i
θ

14: set σ̂2 = 1
N−1

∑N
i=1

(
w̃iθ − w̃·

)2
15: calculate log gθ(z) ▷ Algorithm 1
16: return ÿ�log pθ(y) ▷ Equation (3.39)
17: end function

18: maximize APPROX_LOGLIK with initial value θ0 ▷ numerically
19: set θ0 to optimal value
20: maximize ESTIMATE_LOGLIK with initial value θ0 and CRNs ▷ numerically
21: set θ̂ to optimal value
22: return θ̂

The resulting procedure to find the MLE θ̂ in a PGSSM with linear signal is summarized in
Section 3.7.1. Notice that we use CRNs to ensure numerical convergence. The numerical optimization
can be performed using any standard solver such as the BFGS algorithm (Nocedal and Wright,
2006, Chapter 6.1). We cannot give guarantees that this procedure produces the true MLE, i.e. finds
the global maximizer. However, as we have discussed earlier, we are not interested in frequentist
properties of θ̂ but see the estimation procedure as a hyperparameter tuning step. Thus, a local
maximum may well be sufficient. Nevertheless, checking different starting points and random number
seeds should be used to get as close as possible to the global maximum.

Notice that our discussion implies that we cannot reuse a GLSSM proposal used for θ at another
θ′, as pθ′(x) ̸= gθ(x). While we can still calculate the weights using the general Equation (3.36),
we presume that the old proposal is not a good choice for the new target. The reason for this is
that θ will usually contain parameters related to the covariance structure of the innovations and
observations, and these parameters usually affect many, if not all states or observations. For example,
it is common to model states that perform a random walk with common innovation variance σ2 as
an element of θ. As the distributions lie in a high-dimensional space, slight misspecification of the
covariance structure will drastically deteriorate the performance of importance sampling.

If computations are so involved that we want to avoid running the optimal importance sampling
scheme as much as possible, one could try, if the model under investigation allows for it, to split θ
into (θx, θy) where θx only affects the state transitions and θy only affects the observation densities.
Then a coordinate ascent scheme could be employed, where the update step for θy can reuse the
proposal, provided that θy does not change too much and the observation density pθ(y|x) is not too
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sensitive to changes in θy, which should imply that the proposal is still close enough to give good
importance sampling performance. Then numerical differentiation is only required to update θx.

3.7.2 Posterior inference
rewrite only simulation based, (X,S,Y) samples, outlook could improve using mean/cdf, but use many samples anyways, could be used on
case-by-case basis, but we dont

Once we have chosen θ (by maximum likelihood estimation), and thus a concrete PGSSM with
which to perform statistical inference, we are interested in, e.g., the conditional distribution of states
X given observations Y , or functionals thereof. Here we will assume, for computational reasons,
that the PGSSM has a linear signal, otherwise the same arguments can be applied to the states
directly as well, at the expense of higher computation cost.

At our disposal we will have, after obtaining a GLSSM proposal using the EIS method, signal
samples Si ∈ R(n+1)×p, i = 1, . . . , N and associated auto-normalized weights W i. Let X ∈ R be
a univariate random variable which is conditionally independent of the observations Y given the
signal S, i.e. X ⊥ Y |S, whose conditional expectation and variance given Y exist, as well as a
regular version of this conditional distribution. X can be a marginal of X, a scalar function of X, a
future or missing observation, or function thereof. We will assume that we can sample from X|S.
This is reasonable for all scenarios we are interested in: states and signals are jointly Gaussian, so
samples can be obtained using the FFBS (Algorithm 3), and the distribution of missing or future
observations, conditional on states, is tractable in the models we consider. The following paragraphs
are based on (Durbin and Koopman, 2012, Section 11.5), but stated in more general terms using X.

We are then interested in estimating several quantities: the conditional expectation E (X|Y ), the
conditional variance Var (X|Y ) or α-quantiles of the conditional distribution X|Y . By the assumed
conditional independence, we have

E (X|Y ) = E (E (X|S) |Y ) ,

and, assuming that E (X|S) is known analytically, we may estimate the conditional expectation by

N∑
i=1

W iE
(
X|S = Si

)
.

In the case that E (X|S) is not known analytically, but we can simulate from the conditional
distribution X|S, we can obtain samples Xi, i = 1, . . . , N where Xi is a draw from X|S = Si. By the
conditional independence X ⊥ Y |S, we have p(x, s|y) = p(x|s)p(s|y), and g(x, s|z) = p(x|s)g(s|z), so

p(x, s|y)
g(x, s|z) =

p(s|y)
g(s|z) ∝

p(y|s)
g(z|s)

and (Xi, Si), i = 1, . . . , N are draws from a proposal whose auto-normalized weights coincide with
W i. Thus, we may estimate E (X|Y ) by

N∑
i=1

W iXi.

While this produces estimates with slightly larger variance (due to the additional simulation), we
can control the simulation error by choosing the sample size large enough.

Similarly, by considering X2, we can estimate the conditional variance, and by considering 1X≤x,
we may estimate the conditional cumulative distribution function of X given Y at x, which is just
the empirical CDF of samples Xi with associated weights W i, i = 1, . . . , N . Consequently, we can
estimate the α-quantile of X|Y by the α-quantile of this empirical CDF, where we use the standard
convention for empirical quantiles of linear interpolation between samples to make quantiles unique,
see also (Durbin and Koopman, 2012, Section 11.5.3).
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3.8 Comparison of Importance Sampling method
We now have three tools to produce Gaussian importance sampling proposals: the LA, the CE-
method and EIS. Naturally, we want to choose the optimal tool for the problem at hand. In this
section, we investigate under which circumstances which method is to be preferred over the others.
To judge the performance of each method, we will discuss the following quality criteria:

• breakdown of methods,

• time and space complexity of the method,

• speed of stochastic convergence, as indicated by the asymptotic variance, for the CE-method
and EIS,

• speed of numerical convergence, as indicated by the number of iterations until Algorithms 6
and 8 reach numerical convergence for fixed sample size N and precision ϵ, and

• performance of the optimal proposal, as measured by the efficiency factor, especially as n or
m comes larger.

Let us elaborate on these criteria. With a breakdown of the methods, we mean settings in which
either the numerical scheme diverges, produces parameters that lead to invalid proposals, i.e.
negative variances, or where the proposals fail to produce consistent importance sampling estimates.
Time and space complexity allow us to compare the methods theoretically, i.e. be independent of
implementation details. The speed of stochastic convergence is relevant as well: The smaller the
asymptotic variance, the smaller we can choose the sample size N and thus decrease computation
time. Similarly, numerical convergence directly affects computation time.

reformulate this paragraph nicer

Finally, if one method has vastly better performance at the optimum, we might be willing to spend
more time initially to save time later when we use the proposal to perform inference. Of special
interest is the performance for long (large n) or fat (large m) time series, as the models we fit in
Chapter 4 usually fall into one of these categories.

3.8.1 Breakdown of methods
Let us start with a classical example in which the LA fails to produce consistent importance
sampling estimates.

Example 3.3 (Failure of LA). Consider the Gaussian scale mixture P = 1
2

(
N (0, 1) +N (0, ε−2)

)
with mode x∗ = 0, this is the same setup as in Example 3.2. The LA is GLA = N

(
0, 1

ε2−ε+1

)
,

whose variance goes to 1 as ε goes to 0, so the LA will miss close to 1
2 of the total mass. For ε small

enough, the variance of the LA will be smaller than 1
2ε2 , whence the second moment of the weights

is infinite and importance sampling with GLA is inconsistent.

The CE-method minimizes the KL-divergence between P and Gψ, is given by GCE = N (0, σ2),
where σ2 = 1

2

(
1 + ε−2

)
is the variance of P. As σ2 > 1

2ε
−2, the weights have finite second moment,

and importance sampling with GCE is consistent.

add proof for 1
2

to appendix

As EIS does not yield analytically tractable proposals in this setting, we resort to a simulation
study. Using the same setup as described in Example 3.4, we replicate M = 100 times ψ̂CE and
ψ̂EIS for varying levels of ε2. The resulting excess variances, i.e. σ2 −

(
1
2 + 1

2ε2

)
, efficiency factors

and asymptotic efficiencies are displayed in Figure 3.3. We see that for small ε2, EIS is inconsistent,
while the CE-method stays consistent. However, as is to be expected, for small ε2, the efficiency
factor becomes very small.

This is more of a technical counter-example, in practice the LA produces good importance sampling
proposals, especially for LCSSMs.
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Figure 3.3: TODO

In the LCSSM setting EIS may produce invalid proposals, as estimates of the variance component
in the weighted least squares regression are not guaranteed to be negative. Thus EIS may produce
negative variances. To deal with this, the original EIS paper Richard and Zhang, 2007, Section
3.2 recommends either inflating the prior or setting the parameters in question to arbitrary fixed
values. Alternatively using a more expensive constrained linear least squares solver, such as a
conjugate-gradient method Branch, Coleman, and Y. Li, 1999 or the BVLS (bounded variable least
squares) solver Stark and Parker, 1995 may be appropriate, as is re-running the EIS procedure with
a different random seed. Finally, in the LCSSM setting, we could also identify the corresponding
observation as missing, similar to the argument presented in Section 3.6.1 for the CE-method.

The CE-method presented in Section 3.6.2 (Algorithm 8) depends on the fact that the covariance
matrix of the posterior Cov (X|Y = y) is symmetric positive definite (SPD), i.e. non-singular. This
might be violated if, e.g., the model contains seasonal components whose associated innovations
have variance 0. In this case, the Cholesky roots involved will not be unique. Still Algorithm 8 will,
as N →∞ converge a globally optimal solution, though it may not be unique.

3.8.2 Computational complexity
Throughout this section, we assume that the model in question is a LCSSM with linear signal (c.f.
Definition 3.5) to simplify the treatment. This benefits the LA and EIS approaches, as they may
then be implemented in terms of the simulation and signal smoother. If the observation dimension
p is smaller than that of states m, this is more efficient and we’ll assume this as well. An overview
of computational complexities is given in Table 3.2. Note that most operations can be parallelized
in one way or the other, e.g. sampling from the proposals, and so the time-complexities are not
necessarily indicative of real-world-performance. Still they provide theoretical insight into the
performance of the three methods considered.

Let us begin with a discussion of the computational complexity involved in finding the optimal
parameters, ψLA, ψ̂EIS and ψ̂CE. Here we focus on a single iteration and treat the number of
iterations empirically in Section 3.8.4.

As the LA is based on the Kalman-smoother, the time complexity of a single iteration is O(n(m2 +
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method single iteration (time) single iteration (space) simulation (time)

LA O(n p3) O(np2) O(n(p3 +m3 +N m2))
EIS O(n(m2 + p3 +N p2)) O(N p+ n(p2 +m2)) O(n(p3 +m3 +N m2))
CE-method O(n(Nm2 +m3)) O(Nm+ nm2) O(N nm2)

Table 3.2: Computational complexities of importance sampling algorithms.

p3)). The CE-method and EIS need to generate N samples from the current proposal. For the
CE-method this amounts to O(N nm2) operations (see Section 3.6.2). For EIS, using the simulation
smoother Durbin and Koopman, 2002 requires O(n(m2 + p3 + N p2)) operations: we need to
run the Kalman filter once, while preparing the matrices required for the simulation smoother.
Then, provided Cholesky roots of the innovation covariance matrices Σt are already available, only
matrix-vector multiplications are necessary for the simulation smoother. Obtaining the EIS model
parameters is efficient, requiring only O(n(N p2+p3)) operations for constructing the n p×p design
matrices and estimating the optimal parameters.

Another concern is the time required to generate N samples from the fitted model. For both the LA
and EIS this requires using either the simulation smoother or the FFBS algorithm. This necessitates
inverting p × p matrices in the Kalman filter and m × m matrices when simulating the states.
Fortunately, these steps can be performed offline, after which the simulation of a single sample
requires only O(n) matrix-vector multiplications. The CE-method simulation is based on applying
Equation (3.25), which only requires O(nm2) time per sample.

Concerning space complexity, the LA has to run the Kalman filter with O(n(p2 +m2)) space and
store O(np) parameters. EIS has the same space requirement, but needs additional O(Np) storage
for the simulated signals. As the weights wt in EIS depend only on the current signals S1

t , . . . , S
N
t ,

they may be discarded afterwards. See Section 3.6.2 for the derivation of the O(Nm+ nm2) space
requirement of the CE-method.

The LA has the fastest and most space-efficient iteration of the three methods because it does
not require the simulation of N samples. This makes it an ideal candidate as an initial guess for
the other two methods. For p ≪ m, EIS is faster than CE-method as it is based on the signals
S only, thus having access to the efficient simulation and signal smoother algorithms. The same
is true for the space complexity. If, however, p ≈ m, there is no linear signal or the observations
are not conditionally independent given the states or signals, the speed of EIS and CE-method
should be comparable. While theoretically, the CE-method performs sampling faster than the other
two methods, for large numbers of samples N the difference is negligible because the additional
computations only have to be performed once.

3.8.3 Asymptotic variance
As we have seen in the previous section, the number of samples N used to estimate ψCE and ψEIS
enter linearly into the computational complexities. Naturally, we want to know how big a sample
size we should choose for our procedures and whether one of the two simulation-based procedures
requires fewer samples than the other. To answer this question we turn to the two central limit
theorems, Theorems 3.6 and 3.9. If N is large, the asymptotic variances (or rather: the asymptotic
standard deviations) tell us how much stochastic variation we should expect around the optimal
value, and can thus guide us in choosing N . We start with two examples in a univariate setting,
where both the CE-method and EIS use Gaussian proposals with either fixed variance (Example 3.4)
or mean (Example 3.5). This allows us to compare the methods for either the mean (variance) if
the variance (mean) is fixed and potentially misspecified, i.e. not the global optimum. Additionally,
the univariate setting allows us, in some cases, to derive analytical expressions of the efficiencies
involved, allowing us to interpret them.

rewrite this more clearly
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To compare both methods we will determine the asymptotic relative efficiencies, i.e.
Var(ψ̂EIS)
Var(ψ̂CE)

, with

values smaller than 1 indicating that EIS requires (asymptotically) fewer samples for the same
precision as the CE-method. Let us note that we are comparing the efficiencies of parameters ψ,
not those of derived parameters such as the standard deviation or the ESS. However, should both
methods have the same optimal value the relative efficiencies are the same for all parameters derived
from ψ, by the delta method. By a continuity argument, the same is approximately true if the
optimal values of the CE-method and EIS are close.

Example 3.4 (univariate Gaussian, σ2 fixed). Consider the probability space (R,B(R),P) where
P = pλ for the Lebesgue measure λ which is symmetric around 0, i.e. p(−x) = p(x) for λ-a.e. x ∈ R
and possesses up to third order moments. Let G = P, so W ≡ 1 and let Gψ = N

(
σψ, σ2

)
be the

single parameter natural exponential family of Gaussians with fixed variance σ2 > 0. Then

log gψ(x) = ψT (x)− ψ2

2
+ log h(x),

where T (x) = x
σ and h(x) is the density of N (0, σ2) w.r.t. Lebesgue measure. Note that T is

centered under P. To compare the asymptotic behavior of the CE-method and EIS we compute the
asymptotic variances arising from their respective central limit theorems (Theorems 3.6 and 3.9).

By symmetry, both ψCE and ψEIS are equal to 0. Then I(ψ) = 1 for all ψ, so

VCE = CovP(T ) =
τ2

σ2
, (3.46)

where τ2 = P id2 is the second moment of P.

Additionally, BEIS = (CovP(T ))
−1 = σ2

τ2 and

MEIS = CovP

(
(log

p(x)

h(x)
− λEIS)T

)
= CovP ((log p− log h−P(log p− log h))T )

=
1

σ2

∫
p(x)x2

(
log p(x) +

x2

2σ2
−P

(
log p(x) +

τ2

2σ2

))2

dx.

Thus
VEIS = BEISMEISBEIS = σ2 γ

τ4
,

where γ =
∫
p(x)x2

(
log p(x) + x2

2σ2 −P(log p(x) + τ2

2σ2 )
)2

dx.

Let us now consider three exemplary choices of P that illustrate a target that is sufficiently
well-behaved (the standard normal), multimodal (a Gaussian location mixture) and has different
behavior in the tails than indicated at the mode (a Gaussian scale mixture). For each target, we
vary σ2 from 1

2 to 3 and obtain relative efficiencies of the CE-method and EIS either analytically or
by simulation, the results are shown in the left-hand side of Figure 3.4.

Normal distribution If P = N (0, τ2) is a normal distribution, this reduces to

VEIS =
5

2

(
τ2

σ2
− 1

)2
σ2

τ2
=

5

2

(VCE − 1)
2

VCE

and so for τ2 = σ2 ψ̂EIS converges faster than the standard O(N− 1
2 ) rate. Indeed in this case

ψ̂EIS = ψEIS a.s. for N > 1, see Proposition 3.5.

Gaussian location mixture Consider now the case where P = 1
2N (−1, ω2) + 1

2N (1, ω2) is a
Gaussian location mixture. The second moment is τ2 = 1+ ω2 = − 1

2ψCE
. Unfortunately, there is no

closed-form expression for many of the terms required for the analysis EIS. Instead, we resort to a
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Figure 3.4: Asymptotic relative efficiency VEIS
VCE

for the normal distribution from Example 3.4 (left
hand side) and Example 3.5 (right hand side). Here P is either the standard normal distribution, a
Gaussian location mixture, or a Gaussian scale mixture. Gψ is the normal distribution N (µ, σ2),
where either σ2 is fixed (left) and µ determined by the CE-method / EIS, or the other way around
(right). Notice the log scale of the y-axis. As µ or σ2 get close to their true values, EIS outperforms
the CE-method in terms of asymptotic variance, see Proposition 3.5. todo: clean up figure legend /
linetype, order eps and omega, add global σ2 choosen by estimating both parameters at the same
time?
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simulation study to determine the asymptotic variances and relative efficiencies for three different
values of ω2 ∈ {0.1, 0.5, 1.0}.
To this end we draw M = 100 times from the distribution of ψ̂CE and ψ̂EIS, where we use N = 1000
samples from the tractable P as importance samples. We only iterate a single time for both
procedures. From individual estimates, we estimate the asymptotic variances VCE and VEIS by the
respective empirical variances, and determine the relative efficiency of EIS over the CE-method as
VEIS
VCE

. Again, we vary the fixed variance of the proposals, σ2, from 1
2 to 3.

discuss MC error of this estimate, small enough to ignore?

Gaussian scale mixture Finally we consider P = 1
2

(
N (0, 1) +N (0, ε−2)

)
for ε2 ∈ {2, 10, 100},

a scale mixture similar to the one seen in Example 3.3. Contrary to that example, we choose ε big,
making the N (0, 1) component the one with large variance, to make importance sampling with
σ2 in the range considered consistent. Here τ2 = 1

2 + 1
2ε2 . Again, we estimate the asymptotic VEIS

in the same way as for the Gaussian location mixture, with M = 100 estimates using N = 1000
samples each.

Note that for fixed σ2 the asymptotic variance of the CE-method VCE is the same in all of the
examples considered, as we sample directly from the tractable P, so VCE only depends on P through
its second moment τ2. The asymptotic variance of EIS however depends on both τ2, as well as γ,
which depends on global properties of P.

From the left-hand side of Figure 3.4 we can observe that in the case of P = N (0, 1) EIS has smaller
asymptotic variance compared to the CE-method, as long as σ2 is not heavily misspecified. Indeed,
if σ2 = 1 is correctly specified, by Proposition 3.5, EIS has asymptotic variance 0 and converges
already for a single sample.

Consider now the case where P is a Gaussian location mixture. For ω2 = 1, the location mixture is
unimodal with variance 2 and EIS outperforms the CE-method in terms of asymptotic variance in
the range considered. For the smaller values of ω2 considered here, the location mixture is bimodal.
Close to the true variance 1 + ω2, EIS still outperforms the CE-method.

For the Gaussian scale mixture, the case is less clear. Here the true variance is 1
2 +

1
2ε2 . The location

of the minimal relative efficiency is still close to this true variance, however, as ε2 grows, the
CE-method starts to dominate EIS. Additionally, recall from Example 3.3 that for large ε2 EIS
becomes inadmissible.

Example 3.5 (univariate Gaussian, µ fixed). Consider the same setup as in Example 3.4, i.e. P
is symmetric around 0 with second moment τ2, but let Gψ = N (µ,− 1

2ψ ) be the single parameter
natural exponential family of Gaussians with fixed mean µ and variance σ2 = − 1

2ψ .

Then
log gψ(x) = ψT (x) +

1

2
log (−2ψ)− 1

2
log 2π

for T (x) = (x − µ)2. Thus PT = τ2 + µ2 and CovP T = ν − τ4 + 4τ2µ2 where ν = P id4 and
τ2 = P id2.

By matching moments, we obtain ψCE = − 1
2(τ2+µ2) and I(ψCE) =

1
2ψCE

2 = 2(τ2 + µ2)2. In total

VCE =
1

4(τ2 + µ2)4
(
ν − τ4 + 4τ2µ2

)
(3.47)

For EIS,

ψEIS = (CovP T )
−1

CovP (T, log p)

=
(
ν − τ4 + 4τ2µ2

)−1 ∫
p(x)((x− µ)2 − τ2 − µ2)(log p(x)−P log p(x)) dx︸ ︷︷ ︸

=γ

.
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Then

VEIS =
(
ν − τ4 + 4τ2µ2

)−2
P
(
(id−µ)4

(
log p− ψEIS(id−µ)2 −P log p+ ψ(τ2 + µ2)

)2)
.

We now perform the same analysis as in Example 3.4, the resulting ratio of asymptotic variances
is displayed in the right-hand side of Figure 3.4. In general, the variances σ2

CE = − 1
2ψCE

and
σ2

EIS = − 1
2ψEIS

are different, so the ratio is no longer an asymptotic relative efficiency. However,
it is still relevant as a measure of the relative speed of stochastic convergence of both methods.
Additionally, we display the resulting optimal variances in Figure 3.5.

Normal distribution For the normal distribution P = N (0, τ2) where ν = 3τ4 and γ = −τ2, so

ψEIS =
−τ2

2τ2 (τ2 + 2µ2)
=

−1
2(τ2 + 2µ2)

.

Thus the EIS proposal uses variance σ2
EIS = τ2 + 2µ2, which is bigger than the variance of

σ2
CE = τ2 + µ2 optimal for the CE-method.

In this case the asymptotic variances are

VCE =
τ2(τ2 + 2µ2)

2 (τ2 + µ2)
4

and

VEIS =
µ2
(
2µ6 + 45µ4τ2 + 15τ6

)
4τ4 (2µ2 + τ2)

4 ,

see the Appendix for details.

reference it

Gaussian location mixture same setup as before

Gaussian scale mixture same setup as before

On the left-hand side of Figure 3.4 we see that for µ close to the optimal value, EIS has smaller
asymptotic variance than the CE-method, except for the two bimodal location measures. Again,
due to the finite sample convergence of EIS, Proposition 3.5, the asymptotic variance VEIS goes to
0 as µ→ 0. The more µ becomes misspecified, the ratio of asymptotic variances starts to grow.

In Figure 3.5 we see that, except for the extreme scale mixtures, EIS tends to produce proposals
that have a larger variance than those produced by the CE-method. As we will see in the discussion
of Figure 3.7, this might be advantageous for EIS as proposals with a small variance run the risk of
missing a large part of the probability mass of the target.

clean this

In applications, e.g. the model studied in Chapter 4, we are interested in the performance of the
importance sampling proposals generated by the LA, CE-method and EIS under more complex
circumstances than those discussed in Examples 3.4 and 3.5. In particular, the dimension of ψ is
high (O(n ·m) or even O(n ·m2)) and proposals may not come from a natural exponential family,
so analysis based on Theorems 3.6 and 3.9 is not possible.

really?

Instead, we resort to simulation studies to gain insights into the circumstances when one should prefer
one method over the other. As a leading example, we will use the following vector-autoregressive
state space model with negative binomial observations. A similar, though more involved, model is
studied in Section 4.2 with real data.
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Figure 3.5: TODO

Example 3.6 (Negative Binomial VAR(1) SSM). In this example, we consider a SSM where states
Xt follow a stationary Gaussian VAR(1) process, initialized in its stationary distribution N (0,Σ)
for SPD Σ. For simplicity let the transition matrices be given by a multiple of the identity, i.e.
At = αIm for all t where α ∈ (−1, 1)
add I to symbols

. In total, the states are governed by

X0 ∼ N (0,Σ)

Xt = αXt−1 + εt

εt
i.i.d∼ N (0, (1− α2)Σ), t = 1, . . . , n

where the ε1, . . . , n and X0 are jointly independent. The observations follow a conditional negative
binomial distribution

Y it |Xt ∼ NegBinom
(
exp(Xi

t), r
)
, i = 1, . . . , p t = 0, . . . , n

and individual observations are conditionally independent given the current state. The parametriza-
tion of the negative binomial distribution NegBinom (µ, r) is such that the density is

pµ,r(y) =

(
y + r − 1

r

)(
µ

r + µ

)y (
r

r + µ

)r
∝ µy(µ+ r)−(r+y),

where proportionality is in µ, with expectation µ, variance µ+ µ2

r and support N0.

Our first simulation study concerns the non-asymptotic behavior of the CE-method and EIS
estimators, i.e. finite sample analogs of Theorems 3.6 and 3.9. To this end, we let m = 1 in
Example 3.6 and fix n to
...

. We then simulate once from the marginal distribution of Y and perform the LA to a prespecified
precision ϵ and maximum number of iterations niter, obtaining a proposal distribution GLA. Using
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a large number of samples Ntrue from this proposal we find the optimal GCE and GEIS using the
same desired precision and number of iterations as for the LA. For the remainder of this section,
we ignore sampling variation in these proposals and treat them as exact.

To determine the non-asymptotic sampling behavior we now perform the above procedure again,
using only N ≪ Ntrue many samples for both procedures, obtaining proposals P̂N

CE and P̂N
EIS. As

the full proposals are Gaussian distributions on R(n+1)×m, either given as the posterior of a GLSSM
(LA, EIS) or by a Gaussian Markov process(CE-method), see Section 3.6. This procedure is repeated
M times for every sample size N considered, with different initial random seeds, obtaining P̂N,i

CE
and P̂N,i

EIS for i = 1, . . . ,M .

To assess the speed of convergence of the CE-method and EIS we then estimate the mean squared
error of means and variances of the (n+ 1)×m univariate marginals as N , the number of samples
used to obtain ψ̂CE or ψ̂EIS, grows. For the true value, we take the univariate means and variances
of GCE and GEIS respectively. Additionally, we perform a bias-variance decomposition to see where
the estimation error originates.

More concretely, fix N and denote by µ, σ2 ∈ R(n+1)·m the marginal means and variances of GCE
(GEIS). Let µ̂i, σ̂2

i ∈ R(n+1)·m be the marginal means and variances of GN,i
CE (GN,i

EIS) for i = 1, . . . ,M .
Now

âMSE =
1

M

1

(n+ 1)m

M∑
i=1

∥µ− µ̂i∥22 + ∥σ2 − σ̂2
i ∥22

is an estimate of the mean-squared error of (µ, σ2), where we divide by (n+ 1)m to make estimates
comparable across models of different dimensions.

In Figure 3.6 we show the âMSE for both the CE-method and EIS for varying values of N . As is
evident from this Figure, the CE-method consistently has a larger aMSE than EIS, for all values of
N . Thus the CE-method requires several orders of magnitude more samples to obtain the same
precision as EIS.

For further investigation, we perform a bias-variance decomposition of the aMSE for both the
means µ and variances σ2. Consider the average means and variances over the M simulations,

µ̄ =
1

M

M∑
i=1

µ̂i σ̄2 =
1

M

M∑
i=1

σ̂2
i ,

and the state-average squared bias and variance

aBias2µ =
1

(n+ 1)m
∥µ− µ̄∥22,

aVarµ =
1

M − 1

1

(n+ 1)m

M∑
i=1

∥µ̄− µi∥22,

aBias2σ2 =
1

(n+ 1)m
∥σ2 − σ̄2∥22,

aVarσ2 =
1

M − 1

1

(n+ 1)m

M∑
i=1

∥σ̄2 − σ2
i ∥22.

These values are depicted in Figure 3.6.

interpretation of Figure 3.6, equal contribution of bias and var, not much to gain from bias correction

is bias of CEM really of this order? would expect bias usually to be of order 1/n, bias squared of order 1/n squared, so negligible compared
to 1/n mse?

3.8.4 Numerical convergence

3.8.5 Performance of the optimal proposal
change EF to aEF (asymptotic EF) everywhere in this section
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Figure 3.6: TODO

For the performance of importance sampling the efficiency factor EF = ESS
N plays an important role,

see Section 3.4. Additionally, it allows a comparison of the effectiveness of importance sampling
across multiple sample sizes N , indeed, as N → ∞, EF converges to ρ−1, where ρ is the second
moment of importance sampling weights,

∫
w2 dG.

Returning to the distributions studied in Examples 3.4 and 3.5, we now calculate the asymptotic
efficiency factor

EF =
1

ρ
∈ (0, 1].

As the proposal is always N (µ, σ2) with either µ or σ2 fixed, and P is a mixture of Gaussians or
N (0, 1), ρ is analytically available.

For Example 3.4, both EIS and the CE-method have, by symmetry, the same optimal µ = 0. Thus
the efficiency factor only depends on the fixed σ2, see Figure 3.7, and is the same for EIS and the
CE-method.

For Example 3.5 the two methods have different optimal proposals, thus also different asymptotic
efficiency factors. In Figure 3.8, the first two subfigures show how the efficiency factor depends
on the misspecified mu for both methods. The optimal variances are based on the results from
Example 3.5, i.e. based on simulation for EIS. The right-hand subfigure shows the relative efficiency
factor, i.e. the ratio of the efficiency factor for the CE-method and EIS. Here values smaller than 1
indicate that EIS has a larger efficiency factor than the CE-method.

In this figure, we can observe that, as expected, misspecification in µ almost always results in a
smaller efficiency factor, an exception being the scale mixture with ε2 = 100 for the CE-method.
Compared to Figure 3.7, we see that already small misspecification in µ results in a large decline
in EF, although we should keep in mind that this is not a fair comparison, as µ and σ2 live
on different scales. If µ = 0 is correctly specified, both methods have comparable performance,
except for extreme cases of the mixture models, i.e. when ω2 = 0.1 or when ε2 = 100. For small
misspecification of µ, this remains true, but for larger misspecification, the CE-method has a larger
efficiency factor, especially for the bimodal location mixture with ω2 = 0.1, where the performance
of EIS deteriorates.



3.8. COMPARISON OF IMPORTANCE SAMPLING METHOD 85

0

25

50

75

100

1 2 3
σ2

E
F

[%
]

normal location mixture scale mixture N (0, 1)

ω2 = 0.1

ω2 = 1

ω2 = 0.5

ε2 = 10

ε2 = 100

ε2 = 2

Figure 3.7: TODO

25

50

75

100

0.0 0.5 1.0 1.5 2.0
µ

E
F

[%
]

CE-method

25

50

75

100

0.0 0.5 1.0 1.5 2.0
µ

E
F

[%
]

EIS

0.75

1.00

1.25

1.50

0.0 0.5 1.0 1.5 2.0
µ

re
la

ti
ve

E
F

(C
E

/E
IS

)

normal location mixture scale mixture N (0, 1)

ω2 = 0.1

ω2 = 1

ω2 = 0.5

ε2 = 10

ε2 = 100

ε2 = 2

Figure 3.8: TODO
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Figure 3.9: The asymptotic efficiency factor degenerates as the number of time steps n increases.
We show the estimated efficiency factor over 100 replications of estimating the optimal parameters
for Example 3.6 with the CE-method and EIS with Ntrue = 106 and the resulting estimated
efficiency factors at the optimum. Notice the log scale of the x-axis. The performance of the optimal
CE-method and EIS parameters is comparable and superior to that of the LA

stress that cem gives global optimum, eis only approximate

For the model from Example 3.6 we cannot determine ρ analytically, so we fall back to a simulation
study. Thus, we also estimate EF for each of the M runs, using the same number of samples
N = Ntrue as was used to determine the true optimal parameter. We display the resulting efficiency
factors in Figure 3.9. The parameters α, r,N,M may be found in the bottom right corner of the
figure. For a low number of time steps n, all three methods perform comparably. With increasing n,
their performance expectedly worsens, however, more so for the local LA, while the CE-method
and EIS perform comparably around their optimal value.

3.9 Conclusion
compare independent components exponential family



Chapter 4

Analysis of selected models

Contributions of this chapter

The main contribution of this chapter is to apply the methods derived in Chapter 3 to
selected inference and prediction problems in the context of COVID-19 in Germany.

Removing reporting delays and weekday effects

Regional growth factor model

87
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Figure 4.1: Box plots of delay probabilities p̂t,τ by weekday of case reporting date t. As there are
systematically fewer cases reported on Sunday, there is a small weekday effect: pt,1 for Saturdays,
pt,2 for Fridays, pt,3 for Thursdays and pt,4 for Wednesdays are small compared to other days.
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4.1 Removing reporting delays and weekday effects

4.1.1 Context
Retrospective analysis of the reported cases is one of the main tasks of epidemiological monitoring,
see Section 2.1. For this analysis, it is crucial to have the finest temporal resolution possible, as we
want, e.g., to link the dates on which NPIs were enforced to the growth factors on, or surrounding
these dates. However, as we have observed in Section 2.3, the data at our hand are contaminated by
the reporting process, most notably the week-day effects, reporting delays, and reporting artifacts,
e.g. due to public holidays. While we can make the influence of these effects small by aggregating
data to the weekly level, see Section 4.2, modeling on the daily level facilitates better retrospective
analyses and as such it is the goal of this section.

Here, we use the RKI case incidence data discussed in Section 2.3. As we have seen in Figure 2.3 A
and Figure 2.4, most delays are shorter than 4 days. Thus, ignoring any cases reported with longer
delays, we get for any reporting date t four observations, say

Yt = (Yt,1, . . . , Yt,4) ∈ N4
0.

Here Yt,τ , τ = 1, . . . , 4, is the number of newly reported cases for reporting date t with delay τ ,
such that Yt,· =

∑4
τ=1 Yt,τ is the total number of cases reported for reporting date t with delay ≤ 4.

Let p̂t,τ =
Yt,τ
Yt,·

be the empirical delay probability for day t with delay τ . We have already observed
in Figure 2.3, that Yt,· is subject to weekday effects, and similar to hospitalizations (Figure 2.5),
there is a small weekday effect for the delay of cases, i.e. p̂t,τ , see Figure 4.1.

To produce accurate retrospective analyses of the daily growth factor, we will construct a SSM that
allows to account for these delays, as well as the weekday effects and dynamics of the incidences.
This model will enable us to better understand the delay process, allow to account for periods of
inconsistent reporting, and yield daily growth factors useful for the interpretation of NPI efficacy.

4.1.2 Model
To model the development of cases over time, we start with the exponential growth equation
Equation (2.5). Let It be the total number of cases for reporting date t, unaffected by weekday
effects and reporting delays. Ignoring variation around the mean, the exponential growth ansatz
gives

log It+1 ≈ log ρt+1 + log It
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for the growth factor ρt on day t. It is then sensible to assume that the growth factor ρt performs a
random walk on the log-scale, as we would expect large day-to-day variation of ρt for large values,
and small variation for small values, i.e. multiplicative, rather than additive, day-to-day changes.
Thus, we assume that

log ρt+1 = log ρt + εt+1,ρ

for εt+1,ρ ∼ N (0, σ2
ρ). To incorporate week-day effects, consider a weekly seasonal component

logWt+1 = −
5∑
s=0

logWt−s + εt+1,W ,

for εt+1,W ∼ N (0, σ2
W ), as described in Section 3.1. Finally, to model the reporting delay probabilities

pt,τ , τ = 1, 2, 3, 4, we parameterize them by log ratios

qt,τ = log
pt,τ
pt,4

τ = 1, 2, 3,

which also perform a random walk in time:

qt+1,τ = qt,τ + εt+1,q,τ ,

with εt+1,q,τ ∼ N (0, σ2
q ) whose variance does not depend on the delay τ . To account for the weekday

effect visible in Figure 4.1, we introduce three further weekday effects, for τ = 1, 2, 3 let

logW q,τ
t+1 = −

5∑
s=0

logW q,τ
t−s + εt+1,W q,τ ,

with εt+1,W q,τ ∼ N
(
0, σ2

Wq

)
and shared variance σ2

Wq
. We can recover the delay probabilities pt,τ

from the log-ratios by

pt,4 =
1

1 +
∑3
τ=1 exp (qt,τ + logW q,τ

t )
,

pt,τ = exp
(
qt,τ+logW q,τ

t

)
pt,4,

(4.1)

for τ = 1, 2, 3.

Finally, there are reporting artifacts and other effects that we have not yet considered in our model
contribute to the dirtiness of the data. To account for these effects, we model daily, multiplicative,
„muck“ Mt, for date t, such that the total expected number of reported cases on this date is MtIt

instead of It. We assume that (logMt)t=0,...,n
i.i.d∼ N (− 1

2σ
2
M , σ

2
M ), independent of all other states.

Thus, Mt follows a log-normal distribution with mean 1.

With these components at our disposal, we can model the observed incidences Yt,τ by

Yt,τ | log It, logWt, qt, logMt ∼ Pois (pt,τ exp (log It + logWt + logMt)) , (4.2)

conditionally independent for fixed t. Thus, Wt acts as a multiplicative factor that modulates the
observed cases depending on the day of the week, and the delay probabilities distribute the total
expected number of cases MtWtIt onto the delays. In this model, Yt =

∑4
τ=1 Yt,τ has conditional

expectation
E (Yt| log It, logWt, qt, logMt) =MtWtIt

As it is sensible to model the conditional distribution of Yt by a Poisson distribution (see Section 2.4),
we can view Equation (4.2) as a multinomial thinning of this distribution. Notice that including Mt

introduces overdispersion in this Poisson distribution, similar to modeling with a negative binomial
distribution.
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Letting Xt =
(
log It, log ρt+1, logWt, . . . , logWt−5, qt,1, qt,2, qt,3, logW

q,1
t , . . . , logW q,3

t−5

)T
, assum-

ing that

εt+1 =


εt+1,ρ

εt+1,W

εt+1,q,1

εt+1,q,2

εt+1,q,3


has independent marginals, and fixing an initial distribution of X0 fully specifies a PGSSM for the
joint distribution of (X,Y ). For the initial distribution we use

X0 ∼ N (u0,Σ0)

where u0 is 0 for all elements, except to the third entry (corresponding to M0), which we set to
− 1

2σ
2
M . For the initial covariance we use a diagonal matrix

Σ0 = diag

 25︸︷︷︸
log I

, 0.22︸︷︷︸
log ρ

, s2M︸︷︷︸
M

, 1︸︷︷︸
logW0

, . . . , 1︸︷︷︸
logW−5

, 1︸︷︷︸
q0,1

, 1︸︷︷︸
q0,2

, 1︸︷︷︸
q0,3

, 1︸︷︷︸
logW q,1

0

, . . . , 1︸︷︷︸
logW q,3

−5

,

 .

The model has a linear signal

St =


log It + logWt

qt,1
qt,2
qt,3

 ,

but due to the non-linear dependence of pt,τ on qt,τ , Yt,τ depends not just on St,τ but on the whole of
St. Fortunately, this is not a problem for either the LA or EIS. For the LA (Algorithm 5), notice that
the covariance matrix Ωt is given by the inverse of the negative Hessian of st 7→ log p(yt|st), which
is now non-diagonal. While it is not guaranteed that Ωt is positive semi-definite during the Newton-
Raphson iteration, we can still employ the Kalman filter and signal smoother to perform the iteration
efficiently, see (Jungbacker and Koopman, 2007) and the discussion in Section 3.6.1. Furthermore, at
the global optimum, the Hessian is negative semi-definite, so Ωt is positive semi-definite, specifying
a valid GLSSM proposal. Similarly, we may extend EIS to account for non-diagonal Ωt. Recall from
Section 3.4.3, that EIS minimizes for a given t

N∑
i=1

(
log p(yt|Sit) + ⟨Ω−1t zt, S

i
t⟩ −

1

2
tr
(
Ω−1t Sit(S

i
t)
T
)
− λt

)2

over zt,Ωt, λt. Noticing that (A,B) 7→ tr
(
ATB

)
is the Frobenius inner-product, we see that this

optimization problem is still a weighted linear least squares problem for Ω−1t zt,Ω
−1
t , λt, when we

let Ω−1t take values in the symmetric matrices in Rp×p. As the dimension of this vector space is
p(p+1)

2 , we may still perform the computationally efficient weighted linear least squares routine, but
at an increased cost: the number of parameters increases from 2p+1 (Ωt diagonal) to p+ p(p+1)

2 +1
(Ωt symmetric).

The parameters of the model are θ =
(
log σ2

ρ, log σ
2
W , log σ

2
q , log σ

2
M , log σ

2
Wq

)
, which we model on

the log-scale to avoid having to take care of constraints. Given observations Y = (Y0, . . . , Yn) we
perform maximum likelihood estimation as described in Section 3.7.1. As tuning parameters in
this procedure we use 20 iterations for the LA and EIS, with relative tolerance of convergence
set to 10−5. For the EIS proposals we also use 1 000 samples and all four antithetic variables,
i.e. we use Equation (3.43). At the MLE we again determine the EIS proposal using the same
parameters and perform inference for the conditional distribution using 10 000 samples, applying
the method described in Section 3.7.2 to obtain estimates of the posterior mean, standard deviation
and prediction intervals.
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method σ̂ρ σ̂W σ̂q σ̂M σ̂Wq

manual 0.001 0.100 0.50 0.01 0.10
initial 0.015 0.024 0.12 0.14 0.81
MLE 0.015 0.024 0.12 0.14 0.81

Table 4.1: Standard deviations for the models’ showcase determined either by hand, by the initial
search or by maximum likelihood estimation described in Section 3.7. The difference between the
initial search and the MLE is negligible and is not visible for the precision shown here.
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Figure 4.2: Monte-Carlo estimates of mean (black lines) and 95% prediction intervals (shaded green
regions) for smoothed incidences I and daily growth factors ρ. The total reported cases with delay
at most 4 days, Yt, is shown as a dotted line. The secondary axis for the daily growth factor ρ
indicates the corresponding weekly growth factors ρ7 which are easier to interpret. The gray dashed
line indicates the threshold for growth ρ = 1.

4.1.3 Results
We start by a showcase of the models’ capability, fitting it to the reported case date in the period
from April 5th to September 1st 2020, starting from the first day when 4 delays are available
in the dataset to the initial period of exponential growth in the fall of 2020. We estimate the
parameters θ =

(
log σ2

ρ, log σ
2
W , log σ

2
q , log σ

2
M , log σ

2
Wq

)
by maximum-likelihood estimation, yielding

the parameters displayed in Section 4.1.3. There, we see that log ρt, logWt, qt,1, qt,2 and qt,3 vary
slowly over time, compared to the faster varying W q,1,W q,2,W q,3.

We show importance sampling estimates of the mean and 95% prediction intervals of the conditional
distribution of I and ρ (Figure 4.2) as well as W,M and p (Figure 4.3), based on the procedure
described in Section 3.7.2. For I we additionally show the total number of reported cases with delay
at most 4 days, Yt = Yt,1 + · · ·+Yt,4, as a sanity check. Indeed, I is a smoothed version of Y , which
removes weekday-effects and small discrepancies in reporting, as these effects are captured by the
W and M terms.

For the daily growth factor ρ we additionally display the corresponding weekly growth factors ρ7
on the secondary axis. We see that uncertainty for ρ is roughly constant over time, except close to
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the beginning and end of the time period considered here. We see that until June 2020 ρ is below 1,
followed by a short skip above 1 during the local outbreak highlighted in Figure 2.2 and a return
to ρ < 1 until beginning of July 2020. We will deal with this sudden increase and the following
decrease more extensively in the following section. From the middle of July 2020 to the middle of
August 2020, ρ is consistently above 1, with a slight dip at the end of August, before rising above 1
again. That cases are, or will be, rising exponentially is easier to infer from ρ compared to I, as
ρ, or ρ7 for that matter, directly quantifies the increase in cases. Thus, this sustained period of
exponential growth could have been a warning sign to policymakers of the buildup of infections in
the population, which only became noticeable in the cases starting in October 2020.

For the muck term M , we see that is centered around 1 and allows capturing variation of the
reported cases that is not captured by other terms in the model. As M follows a log Normal
distribution, its variance is

(
exp

(
σ2
M

)
− 1
)
exp

(
2(− 1

2σ
2
M ) + σ2

M

)
= exp

(
σ2
M − 1

)
≈ 0.02, so M

has standard deviation ≈ 0.12 for the MLE from Section 4.1.3, consistent with Figure 4.3. As
such, we expect the reported cases to vary around ±24% on any given day, due to residual effects
not captured by the weekday effect. We also investigated qq-plots of the mean predictions of M ,
which indicate that there might be some outliers, e.g. those around the local outbreak in June 2020,
present. To improve the fit, we could replace the distribution of M by, e.g., a t-distribution with
a low degree of freedom, allowing for heavier tails. The LA for such a model can still be found
efficiently, see (Durbin and Koopman, 2012, Section 11.7.2), so the methods of this section are still
applicable. However, we deem such a modification to be outside the scope of this thesis.

The weekday effect W exhibits the expected seasonal pattern: on Sundays, which are marked by
the minor breaks in the figures’ grid, W is below 1, while it is high for Tuesdays, Wednesdays
and Thursdays. Over the period considered, this pattern is quite stable, with only slight changes
over time: W is slightly larger for Mondays and Fridays at the end of the period compared to the
beginning. By construction, we have logWt =

1
7

∑3
τ=−3 logWt−τ ≈ 0 for all t, so Jensen’s inequality

suggests W̄t =
1
7

∑3
τ=−3Wt−τ ⪆ 1. However, the practical difference is small:

1

7

3∑
τ=−3

E(Wt−τ |Y ) ≈ 1.05,

for t = 3, . . . , n− 3, with small standard deviation. Consequently, we could correct It for the bias
introduced by W by an increase of 5% (or, more precisely, consider ItW̄t).

Finally, for the delay probabilities, we compute both the signals probabilities, given by Equation (4.1),
and a smoothed version, obtained by setting logW q,τ

t to 0 in Equation (4.1). From Figure 4.3, we
see that starting in the middle of April, reporting became faster, with a larger share of cases being
reported with a delay of only a single day. While this seems to reverse at the end of the considered
period, this is likely due to the reporting artifacts at the end of August, indicated by the large spike
in pt,2.

Now that we have seen an application of the model, we use it to demonstrate how easily we can
incorporate missing or faulty observations. Recall from Figure 2.2 the problem of reporting artifacts
during the 2020 Christmas season. In Figure 4.4 we show undesirable effects of directly applying our
model to the data in this period. In this figure, the red lines correspond to inferences made using
all available observations, while turquoise lines correspond to inferences made where we remove all
observations from December 19th 2020 until January 17th 2021, marked by the gray background in
the figure.

As outlined in
ref correct section

, we can fit both models using the same methods, as we only have to replace the observation
matrices Bt for missing dates t by zero matrices and the conditional distribution of Yt,τ |St by δ0,
while replacing Yt,τ by 0 for τ = 1, . . . , 4. In the approximating LAs and EIS proposals we set zt
and Ωt to the zero vector and matrix, respectively.
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Figure 4.3: Importance sampling estimates of mean (black lines) and 95% prediction intervals (green
ribbons) for weekday effect, „muck“ and delay probabilities in the showcase model, based on the
method described in Section 3.7.2. We omit the small prediction intervals for delay probabilities for
better readability. Note that all variables are not included directly in the model, but may be written
as a function of states, either taking the exponential or converting from log-ratios to probabilities.
The minor breaks in the x-axis grid indicate Sundays.
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Figure 4.4: Importance sampling estimates of 95% prediction intervals and means of the conditional
distribution of I and ρ given reported cases for the reporting delay model applied to the period of
October 1st 2020 until February 28th 2021. For I we additionally show weekly average reported
cases as in Figure 2.2.

For the model using all available data, we see that the reporting artifacts affect both the incidences
I and growth factors ρ, with a sharp decrease in ρ during the holidays, followed by a sharp increase
in the new year. For the model that has the flawed observations removed, we see that both I and
ρ behave more smoothly, as the estimated standard deviations, displayed in Table 4.2, are also
smaller. The price we pay for this smoother transition is larger uncertainty where observations are
now missing, i.e. the 95% prediction intervals are larger in this period than those for the model
with all data available. However, when data are available, the prediction intervals for the second
model are smaller, as its estimated standard deviations are smaller. The means, however, tend to
agree rather well.

In Figure 4.5 we additionally show the expected smoothed delay probabilities based on Equation (4.1)
where we set the weekday effects to 0. There, we see that starting on December 24th, the reporting
pattern exhibits strong irregular behavior (recall that the reported cases for December 24th
correspond to December 23rd to December 20th for delays τ = 1, . . . , 4) for the model using all
observations. Additionally, in January, we a large spike in pt,1, which could correspond to a backlog
of cases being reported all at once. Again, the model that has the Christmas period removed,
proceeds much smoother.

4.1.4 Discussion
As we can see from the exemplary results, the model allows to accurately model the evolution of
reported cases over time, while taking care of unwelcome reporting artifacts such as the weekday
effect, delays and changes in reporting pattern due to holidays. The estimated growth factors allow
inferring about the speed at which the cases proliferate, and can thus be a valuable tool for decision
makers. With our model, we can identify the almost constant exponential growth in the summer of
2020 (Figure 4.2), which is difficult to see by only looking at the number of reported cases, due to
the reporting artifacts and low number of cases.
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method σ̂ρ σ̂W σ̂q σ̂M σ̂Wq

all observations
manual 0.0150 0.024 0.12 0.140 0.81
initial 0.0126 0.032 0.37 0.110 0.91
MLE 0.0126 0.032 0.38 0.110 0.91

Christmas removed
manual 0.0150 0.024 0.12 0.140 0.81
initial 0.0087 0.028 0.16 0.048 0.38
MLE 0.0087 0.028 0.16 0.048 0.38

Table 4.2: Estimated parameters for the model during the Christmas period, for all observations
or with observations during the Christmas period (19th December 2020 until January 17th 2021)
removed. The manual parameter is based on the estimate of the models’ showcase, i.e. the MLE
result from Section 4.1.3.
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Figure 4.5: Importance sampling estimates of conditional expectation E (pt,τ |Y ) for the two sets of
Christmas observations: the full lines correspond to all reported incidences and the dashed lines
to observations between December 19th 2020 and January 17th 2021 removed. When using all
observations, we clearly see the effect of the Christmas holidays, with a drop in next day reporting
during the holidays, and an increase in next day reporting in the middle of January.
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As our model explicitly models reporting delays, we can infer about them as well. From Figures 4.3
and 4.5 we can see that during the first year of the epidemic, reporting became faster: while only
about 40% of cases were reported with delay of one day in April 2020, that fraction rose to more
than 60% at the end of 2020, excluding the noisy Christmas period. By including reporting delays,
our model is also capable of performing now- and forecasts of future reported cases. For forecasts,
we evaluate the performance of seven day predictions from this model in the following section.

The SSM nature of our model has the additional advantage of being capable of naturally handling
missing observations, either actual missing observations or synthetically missing observations, such
as in the Christmas period. By removing available observations from the model, we are able to
create a what-if scenario, letting the model automatically fill-in the faulty observations. Let us
hasten to add that this should not be confused with redistributing the number of cases observed in
the Christmas period to better fit the model, as we have not included any restrictions on the total
number of cases being equal to the observed number of cases in this period. Technically, this is
possible, by adding log It−1, . . . , log It−D+1, where D is the number of days removed, to the states
and adding a single observation of

∑D−1
s=0 It∗−s at time t∗, the first day after the Christmas period

is over. Removing the observations from December 19th 2020 to January 17th 2021 removes a total
of 551 031 cases. In the Christmas model, the predictive distribution of cases for this time period
has mean 618 000 (standard deviation 59, 000) with a 95% prediction interval of (511 000, 743 000)
(all numbers rounded to the next thousand to account for the Monte Carlo error). Thus our
reconstruction of the total number of cases is compatible with the total number of cases removed,
albeit slightly overestimating the total number of cases.

While we believe that our model already captures many of the relevant effects for modeling the daily
evolution of cases, there are several worthwhile extensions conceivable. We here give an incomplete
list of potential improvements:

• We have only used the reporting date in our model, but the data include also information (for
some cases) on the symptom onset date. Including this would also allow to better remove the
weekday effect, as infection dates, presumably, are less affected by weekdays than reported
cases.

• In the same vein, including data on deaths would allow for estimates of the reporting dark
figure, and its change over time, as long as immunization through infection and vaccination is
low, i.e. at the beginning of the epidemic.

Most of these improvements require the use of additional data sources, which is straightforward to
do with state space models: we just have to extend the states and dynamics accordingly.

ignores repeated Poisson noise -> need overdispersion

4.2 Regional growth factor model

4.2.1 Context
Modeling the epidemics spread on a regional level allows us to differentiate between localized and
global outbreaks, such as the one in June 2020, highlighted in Figure 2.2. Additionally, regional
level prediction and growth factors are of interest on their own, because NPIs are enforced on the
regional level. Moreover, having access to the spread on the regional level enables, e.g., regression
of the growth rate against regional covariates, which in turn sheds light on which factors drive the
epidemic.

Instead of modeling the number of cases per day and with delay as we did in Section 4.1, we will
now model the total number of cases reported within one week for every county in Germany. Here
we assume that a sufficient time period has passed, i.e. several days, see Figure 2.3, such that the
total number of cases is known sufficiently well. This weekly approach has several advantages: First,
aggregating over the weekly data gets rid of the weekday effect, at the expense of a lower time
resolution. Second, if we are interested in a retrospective analysis, it is sensible to assume all cases
have been reported already, so we can avoid modeling the reporting delays.
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However, modeling cases on the regional level comes with its own challenges, as we have to take
care of accounting for the spatial spread, as well as an exchange between regions, cf. Section 2.4.

4.2.2 Model
Similar to the last section, we start by modeling the evolution of cases in time. We now have
incidences It,r reported for reporting date t and region r, where there are a total of R regions.

comment on Gebietsreform in 2021 (?)

Again, we model the evolution of cases by

log It+1,r ≈ log It+1,r + log ρt+1,r (4.3)

where ρt+1,r is the weekly growth factor in region r. Now we deviate from the previous model and
model

log ρt,r = log ρt + ut,r,

where log ρt is the average growth rate and ut,r is the difference between the growth rate in region
r and the country wide average. We will model ut,r, r = 1, . . . , R to be jointly Gaussian, but
correlated, which will enable us to model regional dependencies. To motivate our choice for the
covariance structure, let us consider how cases are transferred between regions first.

As we are modeling cases on a regional level, we have to account for an exchange of cases as well.
To illustrate our approach, suppose that we have for region r Sr many secondary cases generated
where the primary case belongs to region r, but the secondary case may belong to another region r′.
Here „belonging to“ signifies that the case is reported in that region, which means that the infectee
has registered their center of living to be in this region. Denote by pr,r′ the fraction of such cases
and set pr,r = 1−∑r′ ̸=r pr,r′ .

Under these assumptions, the newly reported cases in region r are

S̃r =
∑
r′

pr′,rS
r′ = (PTS)r

for P = (pr,r′)r,r′=1,...,R. Assuming now that Sr, r = 1, . . . , R are random and i.i.d. with variance
σ2
S , we have

Cov
(
S̃
)
= Cov

(
PTS, PTS

)
= σ2

SP
TP.

However, modeling the correlation of newly reported cases turns out to be difficult: the cases will
surely be modeled by a Poisson or Negative Binomial distribution, so we would have to decide on a
copula to introduce this dependency structure. While this is feasible in principle, we opt for an easier
way. Instead of modeling correlated incidences It+1,r, we model correlated growth rates log ρt+1,r,
by taking Cov (ut) to be σ2

SP
TP . By Equation (4.3), conditional on It,r, this also captures regional

correlation, without having to specify an involved joint distribution for the incidences.

As elaborated in Section 2.4, we want the regional effects ut,r to be both flexible, but also, in some
sense, stable over time. Thus, it makes sense to model ut as a stationary process in time. The
simplest, non-trivial, stationary process is a vector-autoregressive process

ut+1 = αut + εt+1,u

where α ∈ (−1, 1) and εt+1,u ∼ N (0,Γ), where Γ is a positive definite matrix. By the above
discussion, we set Γ = (1 − α2)σ2

SP
TP so that the stationary distribution of ut, t = 0, . . . , n is

N (0, σ2
SP

TP ).

To setup our SSM, let Xt =
(
log ρt+1, ut,1, . . . , ut,R

)T ∈ RR+1. For the observations, we let
Yt = (It,1, . . . , It,R)

T , the number of cases observed in regions 1, . . . , R in the t-th week.
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We then model the number of cases at time t+ 1 in region r, It+1,r to follow a negative binomial
distribution, conditional on the states Xt to be

It+1,r|It, log ρt, ut,r ∼ NegBinom
(
ρt exp(ut,r)P

T It, r
)
,

conditionally independent. While the previous observations It are now conditioned on as well, recall
from our discussion in the beginning of Chapter 3, that this is not problematic.

To fully specify the model, we have to provide the transfer probabilities pr,r′ . For these, we use
official data by Germany’s federal employment agency on commuters

ref

. From these data, we calculate qr,r′ , the fraction of socially insured employees that have their center
of life in region r, but are registered to work in region r′. As this is only a crude approximation to
the actual exchange between regions, we let

pr,r′ ∝ q̄ + (1− q̄) qr,r′∑
r′′ ̸=r′ qr,r′′ + Cqr,r

where we interpret q̄ as a constant socket of exchange between regions and C ≥ 1 as an additional
proportion of stay at home inhabitants that are not captured by qr,r, e.g. elderly or children.

Thus, our final model is parameterized by

θ =
(
log σ2

S , logitα, log(C − 1), logit q̄, log σ2
log ρ

, log r
)
,

where chose a parametrization that is unconstrained. The model has a linear signal

St = (log ρt + ut,r)r=1,...,R ,

which makes inference fast, as the approximating GLSSM in the EIS method only requires O(nR)
many parameters. Again, we use MLE to estimate θ, using the methods from Section 3.7.

4.2.3 Results
• fit model by MLE + show inference for Toennies outbreak, interpret covariance matrix

estimates

• predict incidences on regional level and show that we outperform simple Poisson / NB baseline
that only uses a single region

• maybe: perform predictions for 1-4 weeks ahead, compare to regional FCH

4.2.4 Discussion
consider Armbruster2024Networkbased, Armillotta2023Inference

4.3 Nowcasting hospitalizations
compare SSM predictions to FCH submissions

4.3.1 Context
Judging the severity of the COVID-19 epidemic has been an ongoing challenge since its inception.
As immunization against COVID-19 rose, strict enforcement of social distancing rules eased and
testing regimes became less strict, case incidences became a less reliable and harder to interpret
indicator of epidemic severity. Instead more direct indicators of morbidity, such as the number of
deaths and ICU admissions and occupancy have come to the fore. But these indicators are late due
to the substantial delays between infection and occurence. An alternative indicator that captures
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Figure 4.6: TODO: redo figure with final modelGermany’s 7-day hospitalisation incidence
changes due to various delays such as time to hospitalisation and delays in reporting. This figure
shows the extent of these delays: incidences reported at the present date (red lines) severely
underestimate the hospitalisation incidence (green solid lines) that is reported after 3 months.
Our nowcasting model (blue dotted lines, 95% prediction intervals in shaded gray) deals with
this problem by predicting the hospitalisation incidence based on past cases and their delays to
hospitalisation.

the morbidity caused by COVID-19 but is earlier than the others is the number of hospitalisations
of positive COVID-19 cases.

While hospitalisations occur earlier, they still come with substantial delay between the infection
and subsequent admission to hospital. Additional difficulties arise due to delays in reporting, i.e. the
time it takes until the hospital reports the new case to the national health authorities. The problem
of accounting for delays in reporting for occurred, but not yet reported events has been termed
nowcasting, i.e. forecasting of the indicator at time “now”. Predicting the number of hospitalisations
is thus a mixture of both forecasting — which reported COVID-19 cases will end up in the hospital
— and nowcasting — which cases have yet to be reported — and we will use the term nowcasting in
this paper to mean this predictive mixture. In this section we focus on the situation in Germany
where data on hospitalisations has been available since April 2021 provided by the German federal
health care authorithy, the Robert Koch-Institut (RKI), via Github (Robert Koch-Institut, 2021).

Compared to other approaches in the COVID-19 NowcastHub, that tended to exclusively focus on
modelling the delay distribution with parametric and non-parametric models, our model sidesteps
this complex delay structure by decomposing delayed hospitalisations into weekly chunks (??) and
incorporating case data. As cases and hospitalisations are explicitly linked by the case reporting
date we forecast the number of hospitalisations in each chunk based on the current incidences
and past fractions of hospitalisations in a comparable weekly chunk. We additionally quantify
uncertainty by prediction intervals that are informed by the past performance of our model. This
makes our model straightforward to understand, easy to implement and fast to run.

reformulate

The origin of nowcasting lie in accounting for incurred, but not reported claims in the actuarial
sciences (Kaminsky, 1987), delays in reporting for AIDS (Lawless, 1994; Zeger, See, and Diggle,
1989) and other infectious diseases (Farrington et al., 1996). Popular statistical approaches include
methods from survival analysis (Lawless, 1994) and generalized linear regression (Zeger, See, and
Diggle, 1989). In the survial analysis setting one commonly models the reverse time discrete
hazard parametrically and assumes multinomial sampling of the final number of cases, potentially
accounting for overdispersion. This has been studied with frequentist (Midthune et al., 2005) and
Bayesian (An Der Heiden and Hamouda, 2020; Höhle and An Der Heiden, 2014) methods. The
generalized linear regression approach has origins in the chain ladder model from actuarial sciences
(Renshaw and Verrall, 1998) and models the observed counts in the reporting triangle by a Poisson
or negative binomial distribution. For both approaches, available covariates can be incorporated in
a straightforward way. In the setting of real-time nowcasting, it is often beneficial to incorporate
epidemic dynamics into the model, this can be achieved by splines (Höhle and An Der Heiden, 2014;
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van de Kassteele et al., 2019) or by a latent process of infections (McGough et al., 2020).

Nowcasting methods have wide application in accouting for reporting delays (Midthune et al.,
2005), early outbreak detection (Bastos et al., 2019; Salmon et al., 2015), and, in the recent
COVID-19 epidemic, improving real-time monitoring of epidemic outbreaks (Akhmetzhanov, 2021;
An Der Heiden and Hamouda, 2020; F. Günther et al., 2021; Schneble et al., 2021). Evaluating a
forecasting model in a real-time public health setting is advantageous as it avoid hindsight bias
(Desai et al., 2019), however nowcasting approach may have difficulties with bias and properly
calibrated uncertainty if used in a real-time setting. This includes rapidly changing dynamics
(F. Günther et al., 2021; van de Kassteele et al., 2019), both of the delay distribution and the
underlying epidemic, retrospective changes in data (Midthune et al., 2005) and long delays with
few observed cases (Noufaily et al., 2015).

To avoid the aforementioned hindsight bias one can make their predictions publicly available in real-
time (Bracher et al., 2021; Ray et al., 2020). For the hospitalisations in Germany, we have participated
in the German COVID-19 NowcastHub (Nowcasts Der COVID-19 Hospitalisierungsinzidenz 2022)
since November 2021 where nowcasts are available in a public Github repository (Hospitalization
Nowcast Hub 2022) with the “ILM-prop” model. The ideas, especially the model and the “double-
weekday effect”, discussed this section are based on this model. However, the “ILM-prop” model is
based on simple point estimates for the proportion of hospitalisations per reported case, neglecting
regularization over time. In this thesis we extend this model to the SSM setting of this thesis and
investigate if the increased model complexity results in improved performance. In particular, we
want to reduce computation time, as the previous model quantified uncertainty by past model
performance, which requires running the model many times. If prediction uncertainty is based on
predicting future observations in a SSM, we can reduce computation time drastically. However,
this is only worthwhile, if the predictive performance is comparable to the computationally more
intensive model.

To predict the number of hospitalisations we consider the reporting process of both reported
COVID-19 cases and reported hospitalisations. Recall that the reporting date of a COVID-19 case is
shared for both the case and its hospitalisation, i.e. the case and hospitalisation are linked through
this date.

As hospitalisations are only available as 7-day rolling sums, we use 7-day rolling sums for daily
reported incidences as well. To avoid dealing with the double weekday effect of both reporting date
of the case and reporting date of the hospitalisation (see ??) we divide the future hospitalisations we
wish to predict into chunks of one week, which gets rid of the weekday effect for the hospitalisations.
This is depicted in ??. Our prediction of each of these weekly chunks then consists of the fraction
of hospitalisations of reported cases in the past.

We use the publicly available data from the RKI discussed in Section 2.3 on daily reported COVID-19
cases (Robert Koch-Institut, 2024c) and weekly reported hospitalizations (Robert Koch-Institut,
2024a). Both datasets are updated daily.

Recall from Section 2.3 that COVID-19 cases are described by their date of reporting, and are
subject to reporting delay and hospitalizations are reported by the reporting date of the associated
case, and are subject to delay as well. As the date of symptom onset is not known for a substantial
amount of incident cases, and is not reported for hospitalized cases, we focus our analysis on the
date of reporting.

4.3.2 Model
In line with the structure of the data, we let Ha

t,t+τ be the number of weekly hospitalizations in age
group a with case reporting date t− 1, . . . , t− 7 that are known on the day t+ τ , aggregated over
all states. We suppress the dependence on age group in the following for ease of notation, but all
modeling is the be performed for every age group separately.

As we focus on same-day nowcasting, our goal is to predict on day t Ht,t+D the number of
hospitalizations reported D days into the future, for simplicity assume that the maximal delay
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considered, D, is a multiple of 7. We decompose this target into a weekly telescoping sum

Ht,t+D = Ht,t +

D/7∑
k=1

(Ht,t+7k −Ht,t+7(k−1)),

qt,0

where Ht,t is already known on day t and Ht,t+7k−Ht,t+7(k−1) is the increment in the hospitalization
incidence from the (k − 1)-st week to the k-th week. Recalling that any case attached to the
hospitalization incidence on this date has case reporting date t we now crucially assume that the
hospitalization reporting process consists of two independent events: hospitalization and its delayed
reporting. More formally, let I7t be the seven day case incidence (again, modeled separately for
every age group) on day t, defined in the same fashion as the hospitalization incidence. Thus

I7t =

7∑
τ=1

It−τ,t

where for τ = 1, . . . , 7 I7t−τ,t is the number of cases with reporting date t− τ known on date t. Note
that, similar to the hospitalization incidence, I7t does not contain cases with reporting date t, but
rather cases with reporting dates t− 1, . . . , t− 7. While cases are also affected by reporting delays,
these delays are on the order of days, rather than weeks, cf. Figure 2.3, and averaging over the past
week means that I7t is subject to only minor, neglible, reporting delays. We thus model

Ht,t+7k −Ht,t+7(k−1)|I7t , pt,k ∼ Poisson
(
λt,k

)
λt,k = I7t pt,k, (4.4)

conditionally independent for all t and k. Here pt,k is the proportion of reported cases I7t that will
become hospitalized after k weeks. For simplicity of notation, let Ht,t−7 = 0, so that Ht,t−Ht,t−7 =
Ht,t has conditional rate λt,0 = I7t pt,0.

Figure 4.7 displays the empirical delay probabilities p̂t,k =
Ht,t+7k−Ht,t+7(k−1)

I7t
during 2022 on the

log scale for small k.
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Ignoring noisy day-to-day variation, we see that within an age group, the delay probabilities evolve
roughly in parallel. This encourages us split the delayed hospitalization probabilities pt,k for all t
and k into two parts

pt,k = ptqt,k

where pt is the time-varying proportion of hospitalization and qt,0, . . . , qt,D7
comprise the delay

distribution. To make this identifiable we impose that
∑D

7

k=0 qt,k = 1. Figure 4.7 implies that the
delay probabilities evolve rather smoothly, so we let the log-probabilities log pt perform a second
order random walk, i.e. we model

log pt+1 = log pt + vt

vt+1 = vt + εt+1,v.

For the delay distribution, we first reparameterize to consecutive conditional probabilities

qct,k =
qt,k

1−∑k−1
l=1 qt,l

,

i.e. qct,k is the probability of a delay of exactly k weeks, conditional on having at least k weeks of

delay. This reparameterization is a diffeomorphism from the open simplex
{
p ∈ R

D/7+1
>0

∣∣∣∥p∥1 = 1
}

to (0, 1)D/7 × {1} which has the advantage that qt,k only depends on qct,l for l ≤ k (rather than
all of them, as was the case for the model in Section 4.1). We then model the logits of these
reparameterized delay probabilities to perform independent random walks

logit qct+1,k = logit qct,k + εt+1,q,k

for εt+1,q,k ∼ N (0, σ2
q ).

From Figure 4.7 we additionally observe a weekday effect, at least for small k. Thus, we additionally
add two multiplicative weekday effects for qc0 and qc1, i.e. we modify (4.4) to be

λt,k = Itptqt,kWt,k for k = 0, 1, (4.5)

where Wt,0 and Wt,1 are two independent, multiplicative weekday effects as for the model in
Section 4.1. The choice of having two weekday effects here is based on balancing the dimension
of the model, and thus the computational resources required to run inferences and predictions,
with its explainability and is based on numerical experiments. A more rigorous analysis, e.g. using
information criteria, could be run as well, but is outside the scope of this thesis.

As always, we assume that the innovations

εt+1 =
(
εt+1,v, εt+1,q,0, . . . , εt+1,q,D/k−1, εt+1,W,0, εt+1,W,1

)
Cov (εt+1) = Σt+1 = diag

(
σ2
p, σ

2
q , . . . , σ

2
q , σ

2
W , σ

2
W

)
are centered, independent across all t and Gaussian.

These considerations lead to a PGSSM with linear signal

rethink this term once again

. Let the states and signals be given by

Xt =
(
log pt, logit qt,0, . . . , logit qt,D/7, logWt,0, . . . , logWt−5,0, logWt,1, . . . , logWt−5,1

)T
St =

(
e1 0p e2 . . . ep e2 0p×5 e3 0p×5

)
Xt

=
(
log pt, logit qt,0 + logWt,0, logit qt,1 + logWt,1, logit qt,2, . . . , logit qt,D7 −1

)T
and let the observations be

Yt =
(
Ht,t, Ht,t+7 −Ht,t, . . . ,Ht,t+D −Ht,t+D−7

)T
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with conditional distribution given by Equation (4.4) where λt,k is given by Equation (4.5).

Notice that we do not need to specify the evolution of cases over time, as we are interested only in
nowcasting hospitalizations for the current day. On day t there are many missing observations, in
particular, we only observe the first component of Yt−6, . . . , Yt, only the first two components of
Yt−13, . . . , Yt−7 and so on. These can be dealt with as in the Gaussian case, setting the corresponding
rates λt,k manually to 0 and replacing the missing observations by 0. For the approximating GLSSMs,
we use the missing data strategy discussed in Section 3.1.

For the initial distribution of use X0 ∼ N (EX0,Σ0) where

EX0 =


log p0
0
. . .
0


and Σ0 = σ2

0I is a multiple of the identity matrix. We chose these initial conditions as they
only introduce two further unknown parameters, making them amenable to maximum likelihood
estimation. Of course specifying the same (large) variance σ2

0 for all states may simultaneously over-
and under-estimate the initial variance in some components. As an alternative, one could implement
the diffuse initialization of the Kalman filter, see (Ansley and Kohn, 1985; Koopman, 1997).

The model is parameterized by

θ =
(
log σ2

p, log σ
2
q , log σ

2
W , log σ

2
0 , log p0

)
which we estimate by MLE.

To fit the model for all age groups, we use at most 100 iterations for all occurences of the LA, with
a convergence threshold set to 10−5 relative difference in z and Ω. We use the same method for
EIS, where we additionally use 1, 000 samples to determine the optimal proposal, starting with the
proposal given by th LA.

For MLE, we use 1, 000 samples to determine the maximum likelihood estimate of the parameters,
initializing at the initial guess given by Section 3.7.1.

To obtain prediction intervals of the states, signals and missing observations we use 10, 000 samples.
To estimate the ESS we use 10, 000 samples.

4.3.3 Results
To demonstrate the capabilities of our model, we fit it the analysis period of the NowcastHub, i.e.
to the period from 22nd November 2021 to 29th April 2022. We do this for each of the seven age
groups, including all age-groups together, the 00+ age group. For each of these age groups, we fit
the model as described in last subsection. For the younger age groups, long delays are rare (see also
Figure 4.7), which leads to numerical instabilities in the consecutive logit parametrization. To deal
with this, we manually choose the maximum delay that still produces a reasonable model fit, which
we define here as an EF above 5%. We show the resulting weeks of delay and EF in Table 4.3. The
resulting posterior distributions of interest are displayed in Figure 4.8.

We see that, generally, hospitalization probabilities pt grow larger as the age group under con-
sideration becomes older; note the logarithmic y-axis. The exception here is the youngest age
group A00-04. While infants are vulnerable to COVID-19 (Havers et al., 2024), this may be due
to circumstantial testing in hospitals: children in age group A05-14 were largely subjected to
mandatory testing at school, so we would expect the darkfigure of unreported cases in age group
A00-04 to be large compared to the older age groups. As always, we stress that interpretations of
our results are contingent on taking the considerations from Section 2.3 into account. Nevertheless,
we see pt drop in all age groups, except A00-A04, over the period considered. This is consistent with
the rise of the Omicron variant of SARS-CoV-2 (Robert Koch-Institut, 2024e) which is associated
with milder progression of disease.
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Figure 4.8: For each of the seven age groups (indicated by color and linetype), we show means of
the smoothing distribution for the first four delay probabilities qt,k, k = 0, . . . , 3, the smoothed
probabilities of hospitalization pt and the two weekday effects Wt,0,Wt,1. Recall that we fit a
separate model for each age group. For the smoothed delay probabilities, we additionally show 95%
prediction intervals. Note the log-scale of the y-axis for the smoothed delay probabilities.
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Age group EF [%] weeks of delay

A00-04 61 5
A05-14 5 5
A15-34 74 7
A35-59 88 7
A60-79 93 8
A80+ 98 8
A00+ 97 8

Table 4.3: Efficiency factors (in %) and weeks of delay for the seven models (one per age group)
presented in this section. For younger age groups, there are few long delays, which causes numerical
instabilities due to the consecutive conditional probability parametrization chosen in this section.
For each of the age groups, we chose the longest delays that still allowed for a reasonable fit, with
a maximum delay of 8 weeks. While the efficiency factor for A05-14 is quite low, we use a large
enough number of samples for the prediction of states and signals, so the ESS is still sufficiently
large.

We also observe a pronounced weekday effect Wt,0 across all age groups, with a smaller proportion
of I7t reported as hospitalized already on day t if t is a Sunday, as indicated by the vertical grid
lines in Figure 4.8. To compensate, Wt,1 is large when Wt,0 is small. Again, A00-04 exhibits a more
pronounced weekday effect, but the general pattern is consistent across all age groups. On the
right-hand side of Figure 4.8 we see the delay probabilities qt,k for k = 0, . . . , 3.

interpet, wait for mean delay

.
interpret table:hospitla. ess after final results

To evaluate the predictive capabilities of our model, we use it to perform retrospective nowcasting
of hospitalizations, emulating the setting of the German NowcastHub. Contrary to the German
NowcastHub, we focus on same-day nowcasting, i.e. only nowcasting for the current day instead of
the past 28 days as well. Again, we perform all predictions for every age group separately.

For every day, s say, in the period of 22nd November 2021 to 29th April 2022 we fit the model to
the data of the past 100 days that were available on day s. Thus, the observations of the model
consist of yt for s− 100 < t ≤ s, but as

yt = (Ht,t, Ht,t+7 −Ht,t, . . . ,Ht,t+D −Ht,t+D−7) ,

the k − 1-st component of yt is missing, if t+ 7k > s. Taking the last day, s, as an example Hs,s

is made available to the model, but Hs,s+7k for k > 0 is not, and so ys = (Hs,s,NA, . . . ,NA)
where NA indicates missing observations. Similarly, the last observation for which the second
component is available is ys−7 and so on. Similar to the other models in this thesis, and as explained
in Section 3.1, we can include these missing observations in a straightforward manner, by setting
the corresponding rows of Bt to 0, setting the same entries of st to −∞, such that λt,k = 0, and
replacing missing observations by 0. For the approximating GLSSMs, we fix the rows and columns of
Ωt and entries of zt that correspond to missing observations to 0. To make fitting the 158 resulting
models computationally feasible, we omit the MLE step and fit the model using only the initial
value from Section 3.7.1.

To nowcast the total number of hospitalizations, we use the method described in Section 3.7.2,
i.e. using MC-integration to estimate quantiles of Hs,D. Accordingly, we draw N samples from
the smoothing distribution Sis|Z = z with weights W i and, conditional on these samples, Ỹ is |Sis ∼
Poisson

(
expSis

)
, independent of everything else, where we fix the first component be the known

ys,1 = Hs,s. Summing up, we obtain N draws Hi
s,D = Hs,s+

∑D/7
k=1 Ỹ

i
s,k with associated weights W i

from which we can estimate the desired quantiles. We use the same quantiles as in the NowcastHub,
i.e. the 1%, 2.5%, 5%, 10%, . . . , 90%, 95%, 97.5% and 99% quantiles.
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• explore model fit & nowcasting for NCH period

• compare to same-day nowcasts provided by other models in the NCH (w/ WIS as performance
metric)

• discuss usefulness of indicator vs. actual hospitalizations

4.3.4 Discussion
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Appendix B

Additional calculations

Equation (3.10)
To show Equation (3.10) we calculate the second moment of w(X)X,

E(w(X)X)2 =

∫
w(x)2x2g(x) dx

=

∫
σ2 exp

(
−x2

(
1− 1

σ2

))
x2

1√
2πσ2

exp

(
− x2

2σ2

)
dx

=

∫
σx2

1√
2π

exp

(
−x

2

2

(
2− 2

σ2
+

1

σ2

))
dx

=

∫
σx2

1√
2π

exp

(
−x

2

2

2σ2 − 1

σ2

)
dx

= τσ

∫
x2

1√
2πτ2

exp

(
− x2

2τ2

)
dx

= τ3σ =
σ4

(2σ2 − 1)
3
2

where τ2 = σ2

2σ2−1 .
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Rc . . . . . . . . . . . . . . . . . . case reproduction number

Rt . . . . . . . . . . . . . . . . . . time-varying reproduction number

X:t . . . . . . . . . . . . . . . . . . (X0, . . . , Xt) for t ∈ N0

Xs:t . . . . . . . . . . . . . . . . . (Xs, . . . , Xt) for s, t ∈ N0, s < t

R>0 . . . . . . . . . . . . . . . . . positive real numbers

Θ . . . . . . . . . . . . . . . . . . . set of all parameters

Pois . . . . . . . . . . . . . . . . . Poisson distribution

ρ . . . . . . . . . . . . . . . . . . . growth factor

θ . . . . . . . . . . . . . . . . . . . a parameter

d . . . . . . . . . . . . . . . . . . . doubling time

p . . . . . . . . . . . . . . . . . . . generic density

r . . . . . . . . . . . . . . . . . . . exponential growth rate

test . . . . . . . . . . . . . . . . . doubling

w . . . . . . . . . . . . . . . . . . . generation time distribution

N0 . . . . . . . . . . . . . . . . . . Natural numbers, including 0

N . . . . . . . . . . . . . . . . . . Natural numbers, excluding 0

Rp×m . . . . . . . . . . . . . . . . matrices with p rows and m columns of real entries

E . . . . . . . . . . . . . . . . . . . expected value
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